The coronavirus disease 2019 (COVID-19) is caused by the etiological agent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19, with the recurrent epidemics of new variants of SARS-CoV-2, remains a global public health problem, and new antivirals are still required. Some cholesterol derivatives, such as 25-hydroxycholesterol, are known to have antiviral activity against a wide range of enveloped and non-enveloped viruses, including SARS-CoV-2.
View Article and Find Full Text PDFThe Ups2-Mdm35 complex mediates intramitochondrial phosphatidylserine (PS) transport to facilitate mitochondrial phosphatidylethanolamine (PE) synthesis. In the present study, we found that ups2∆ yeast showed increased mitochondrial ATP production and enhanced quiescence (G0) entry in the post-diauxic shift phase. Transcriptomic and biochemical analyses revealed that the depletion of Ups2 leads to overactivation of the yeast AMPK homolog Snf1.
View Article and Find Full Text PDFProtein Sci
November 2021
Phosphatidylserine (PS) synthase 1 (PSS1) of mammalian cells is a multiple membrane-spanning protein of the endoplasmic reticulum (ER) and regulated by inhibition with the product PS. Alanine-scanning mutagenesis of PSS1 has revealed eight amino acid residues as those crucial for its activity and six as those important for its regulation. Furthermore, three missense mutations in the human PSS1 gene, which lead to regulatory dysfunctions of PSS1 and are causative of Lenz-Majewski syndrome, have been identified.
View Article and Find Full Text PDFPeroxisomes are single-membrane organelles present in eukaryotes. The functional importance of peroxisomes in humans is represented by peroxisome-deficient peroxisome biogenesis disorders (PBDs), including Zellweger syndrome. Defects in the genes that encode the 14 peroxins that are required for peroxisomal membrane assembly, matrix protein import and division have been identified in PBDs.
View Article and Find Full Text PDFMitochondria import nearly all of their resident proteins from the cytosol, and the TOM complex functions as their entry gate. The TOM complex undergoes a dynamic conversion between the majority population of a three-channel gateway ("trimer") and the minor population that lacks Tom22 and has only two Tom40 channels ("dimer"). Here, we found that the porin Por1 acts as a sink to bind newly imported Tom22.
View Article and Find Full Text PDFPeroxisomes contain anabolic and catabolic enzymes including oxidases that produce hydrogen peroxide as a by-product. Peroxisomes also contain catalase to metabolize hydrogen peroxide. It has been recognized that catalase is localized to cytosol in addition to peroxisomes.
View Article and Find Full Text PDFMitochondrial synthesis of cardiolipin (CL) and phosphatidylethanolamine requires the transport of their precursors, phosphatidic acid and phosphatidylserine, respectively, to the mitochondrial inner membrane. In yeast, the Ups1-Mdm35 and Ups2-Mdm35 complexes transfer phosphatidic acid and phosphatidylserine, respectively, between the mitochondrial outer and inner membranes. Moreover, a Ups1-independent CL accumulation pathway requires several mitochondrial proteins with unknown functions including Mdm31.
View Article and Find Full Text PDFCardiolipin (CL) is synthesized from phosphatidic acid (PA) through a series of enzymatic reactions occurring at the mitochondrial inner membrane (MIM). Ups1-Mdm35 mediates PA transfer from the mitochondrial outer membrane (MOM) to the MIM in the yeast Saccharomyces cerevisiae. Deletion of UPS1 leads to a ~80% decrease in the cellular CL level.
View Article and Find Full Text PDFPeroxisomal biogenesis disorders (PBDs) are fatal genetic diseases consisting of 14 complementation groups (CGs). We previously isolated a peroxisome-deficient Chinese hamster ovary cell mutant, ZP114, which belongs to none of these CGs. Using a functional screening strategy, VDAC2 was identified as rescuing the peroxisomal deficiency of ZP114 where VDAC2 expression was not detected.
View Article and Find Full Text PDFDiverse protein import pathways into mitochondria use translocons on the outer membrane (TOM) and inner membrane (TIM). We adapted a genetic screen, based on Ura3 mistargeting from mitochondria to the cytosol, to identify small molecules that attenuated protein import. Small molecule mitochondrial import blockers of the Carla Koehler laboratory (MB)-10 inhibited import of substrates that require the TIM23 translocon.
View Article and Find Full Text PDFPhosphatidylethanolamine (PE) is an essential phospholipid for mitochondrial functions and is synthesized mainly by phosphatidylserine (PS) decarboxylase at the mitochondrial inner membrane. In Saccharomyces cerevisiae, PS is synthesized in the endoplasmic reticulum (ER), such that mitochondrial PE synthesis requires PS transport from the ER to the mitochondrial inner membrane. Here, we provide evidence that Ups2-Mdm35, a protein complex localized at the mitochondrial intermembrane space, mediates PS transport for PE synthesis in respiration-active mitochondria.
View Article and Find Full Text PDFMitochondrial fission facilitates cytochrome c release from the intracristae space into the cytoplasm during intrinsic apoptosis, although how the mitochondrial fission factor Drp1 and its mitochondrial receptors Mff, MiD49, and MiD51 are involved in this reaction remains elusive. Here, we analyzed the functional division of these receptors with their knockout (KO) cell lines. In marked contrast to Mff-KO cells, MiD49/MiD51-KO and Drp1-KO cells completely resisted cristae remodeling and cytochrome c release during apoptosis.
View Article and Find Full Text PDFPhosphatidylethanolamine (PE) in the yeast Saccharomyces cerevisiae is synthesized through decarboxylation of phosphatidylserine (PS), catalysed by PS decarboxylase 1 (Psd1p) and 2 (Psd2p) and the cytidine 5'-diphosphate (CDP)-ethanolamine (CDP-Etn) pathway. PSD1 null (psd1Δ) and PSD2 null (psd2Δ) mutants are viable in a synthetic minimal medium, but a psd1Δ psd2Δ double mutant exhibits Etn auxotrophy, which is incorporated into PE through the CDP-Etn pathway. We have previously shown that psd1Δ is synthetic lethal with deletion of VID22 (vid22Δ) [Kuroda et al.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2014
Primary hyperoxaluria 1 (PH1; Online Mendelian Inheritance in Man no. 259900), a typically lethal biochemical disorder, may be caused by the AGT(P11LG170R) allele in which the alanine:glyoxylate aminotransferase (AGT) enzyme is mistargeted from peroxisomes to mitochondria. AGT contains a C-terminal peroxisomal targeting sequence, but mutations generate an N-terminal mitochondrial targeting sequence that directs AGT from peroxisomes to mitochondria.
View Article and Find Full Text PDFThe transport and intracellular trafficking of heme biosynthesis intermediates are crucial for hemoglobin production, which is a critical process in developing red cells. Here, we profiled gene expression in terminally differentiating murine fetal liver-derived erythroid cells to identify regulators of heme metabolism. We determined that TMEM14C, an inner mitochondrial membrane protein that is enriched in vertebrate hematopoietic tissues, is essential for erythropoiesis and heme synthesis in vivo and in cultured erythroid cells.
View Article and Find Full Text PDFWe used exome sequencing to identify mutations in sideroflexin 4 (SFXN4) in two children with mitochondrial disease (the more severe case also presented with macrocytic anemia). SFXN4 is an uncharacterized mitochondrial protein that localizes to the mitochondrial inner membrane. sfxn4 knockdown in zebrafish recapitulated the mitochondrial respiratory defect observed in both individuals and the macrocytic anemia with megaloblastic features of the more severe case.
View Article and Find Full Text PDFPeroxisome is a single-membrane organelle in eukaryotes. The functional importance of peroxisomes in humans is highlighted by peroxisome-deficient peroxisome biogenesis disorders such as Zellweger syndrome. Two AAA peroxins, Pex1p and Pex6p, are encoded by PEX1 and PEX6, the causal genes for PBDs of complementation groups 1 and 4, respectively.
View Article and Find Full Text PDFDuring biogenesis of the peroxisome, a subcellular organelle, the peroxisomal-targeting signal 1 (PTS1) receptor Pex5 functions as a shuttling receptor for PTS1-containing peroxisomal matrix proteins. However, the precise mechanism of receptor shuttling between peroxisomes and cytosol remains elusive despite the identification of numerous peroxins involved in this process. Herein, a new factor was isolated by a combination of biochemical fractionation and an in vitro Pex5 export assay, and was identified as AWP1/ZFAND6, a ubiquitin-binding NF-κB modulator.
View Article and Find Full Text PDFPex5p is the cytosolic receptor for peroxisome matrix proteins with peroxisome-targeting signal (PTS) type 1 and shuttles between the cytosol and peroxisomes. Here, we show that Pex5p is ubiquitinated at the conserved cysteine(11) in a manner sensitive to dithiothreitol, in a form associated with peroxisomes. Pex5p with a mutation of the cysteine(11) to alanine, termed Pex5p-C11A, abrogates peroxisomal import of PTS1 and PTS2 proteins in wild-type cells.
View Article and Find Full Text PDFPex7p, the peroxisome-targeting signal type 2 (PTS2) receptor, transports PTS2 proteins to peroxisomes from the cytosol. We here established a cell-free Pex7p translocation system. In assays using post-nuclear supernatant fractions each from wild-type CHO-K1 and pex7 ZPG207 cells, 35S-labeled Pex7p was imported into peroxisomes.
View Article and Find Full Text PDFp97, an essential chaperone in endoplasmic reticulum-associated degradation and organelle biogenesis, contains two AAA domains (D1 and D2) and assembles as a stable hexamer. We present a quantitative analysis of nucleotide binding to both D1 and D2 domains of p97, the first detailed study of nucleotide binding to both AAA domains for this type of AAA+ ATPase. We report that adenosine 5'-O-(thiotriphosphate) (ATPgammaS) binds with similar affinity to D1 and D2, but ADP binds with higher affinity to D1 than D2, offering an explanation for the higher ATPase activity in D2.
View Article and Find Full Text PDFThe peroxisome is a single-membrane-bound organelle found in eukaryotes. The functional importance of peroxisomes in humans is highlighted by peroxisome-deficient PBDs (peroxisome biogenesis disorders), such as Zellweger syndrome. Two AAA (ATPase associated with various cellular activities) peroxins, Pex1p and Pex6p, are encoded by PEX1 and PEX6, the causal genes for CG (complementation group) 1 and CG4 PBDs respectively.
View Article and Find Full Text PDFPeroxisomal matrix proteins are posttranslationally imported into peroxisomes with the peroxisome-targeting signal 1 receptor, Pex5. The longer isoform of Pex5, Pex5L, also transports Pex7-PTS2 protein complexes. After unloading the cargoes, Pex5 returns to the cytosol.
View Article and Find Full Text PDF