An efficient nanoparticulate drug carrier intended for chemotherapy based on intravenous administration must exhibit a long enough blood circulation time, a good penetrability into the tumour volume, as well as an efficient uptake by cancer cells. Limiting factors for the therapeutic outcome are recognition of the nanoparticles as foreign objects, which triggers nanoparticle uptake by defence organs rich in macrophages, liver and spleen, on the time-scale of accumulation and uptake in/by the tumour. However, the development of nanomedicine towards efficient nanoparticle-based delivery to solid tumours is hampered by the lack of simple, reproducible, cheap, and predictive means for early identification of promising nanoparticle formulations.
View Article and Find Full Text PDFBackground: Oral vaccination of the small Indian mongoose against rabies has been suggested as a potential tool to eliminate mongoose-mediated rabies on several Caribbean islands. A recently developed oral rabies virus vaccine strain, SPBN GASGAS, has already been shown to be efficacious in this reservoir species. Since, all available oral rabies vaccines are based on replication-competent viruses and vaccine baits are distributed unsupervised in the environment, enhanced safety standards for such vaccine types are required.
View Article and Find Full Text PDF