Publications by authors named "Nolte S"

We report on the inscription of apodized Bragg grating waveguides (BGWs) in fused silica using a modulated high repetition rate fs laser system. Tailoring of the grating's coupling strength is facilitated by appropriately substructuring the modulation of the inscribing laser radiation. The proposed alteration delivers an unchanged constant mean refractive index entailing homogeneous guiding properties along the entire waveguide.

View Article and Find Full Text PDF

We report the inscription of low-loss fiber Bragg gratings using focused femtosecond (fs) pulses and a continuous core-scanning technique. This direct-write technique produces high-fidelity Type I-IR gratings that share the inherent advantages of other direct-write methods, such as the point-by-point (PbP) method, for which the grating period is a free parameter. However, here we demonstrate an order of magnitude improvement in scattering loss compared to PbP gratings, to a level comparable with that of phase-mask-based fs inscription.

View Article and Find Full Text PDF

Importance: During guideline development, it is essential to systematically review existing guidelines that may be suitable for adaptation; however, such review is laborious and may not always uncover useful guidelines.

Objective: To identify existing clinical practice guidelines and assess their methodologic quality and suitability for adaptation in the German evidence-based guideline "Prevention of Skin Cancer."

Evidence Acquisition: A systematic literature search was performed across a range of databases and homepages of guideline development institutions.

View Article and Find Full Text PDF

We demonstrate and characterize a highly linearly polarized (18.8 dB) narrow spectral emission (<80 pm) from an all-fiber Tm laser utilizing femtosecond-laser-written fiber Bragg gratings. Thermally-dependent anisotropic birefringence is observed in the FBG transmission, the effects of which enable both the generation and elimination of highly linearly polarized output.

View Article and Find Full Text PDF

We investigate numerically and experimentally the influence of coupling disorder on the self-trapping dynamics in nonlinear one-dimensional optical waveguide arrays. The existence of a lower and upper bound of the effective average propagation constant allows for a generalized definition of the threshold power for the onset of soliton localization. When compared to perfectly ordered systems, this threshold is found to decrease in the presence of coupling disorder.

View Article and Find Full Text PDF

We investigate the interplay of Bloch oscillations and Anderson localization in optics. Gradual washing out of Bloch oscillations and the formation of nearly stationary averaged intensity distributions, which are symmetric for narrow and strongly asymmetric for broad input excitations, are observed experimentally in laser-written waveguide arrays. At large disorder levels Bloch oscillations are completely destroyed and both narrow and wide excitations lead to symmetric stationary averaged intensity distributions with exponentially decaying tails.

View Article and Find Full Text PDF

Brain tumors represent the leading cause of childhood cancer mortality, of which medulloblastoma (MB) is the most frequent malignant tumor. Recent studies have demonstrated the presence of several MB molecular subgroups, each distinct in terms of prognosis and predicted therapeutic response. Groups 1 and 2 are characterized by relatively good clinical outcomes and activation of the Wnt and Shh pathways, respectively.

View Article and Find Full Text PDF

Topological insulators are a new phase of matter, with the striking property that conduction of electrons occurs only on their surfaces. In two dimensions, electrons on the surface of a topological insulator are not scattered despite defects and disorder, providing robustness akin to that of superconductors. Topological insulators are predicted to have wide-ranging applications in fault-tolerant quantum computing and spintronics.

View Article and Find Full Text PDF

We demonstrate quantum walks of a photon pair in a spatially extended Einstein-Podolsky-Rosen state coupled into an on-chip multiport photonic lattice. By varying the degree of entanglement we observe Anderson localization for pairs in a separable state and Anderson colocalization for pairs in an Einstein-Podolsky-Rosen entangled state. In the former case, each photon localizes independently, while in the latter neither photon localizes, but the pair colocalizes--revealing unexpected survival of the spatial correlations through strong disorder.

View Article and Find Full Text PDF

We report on the welding of fused silica with bursts of ultrashort laser pulses. By optimizing the burst frequency and repetition rate, we were able to achieve a breaking resistance of up to 96% of the bulk material, which is significantly higher than conventional high repetition rate laser bonding. The main reason for this stability increase is the reduced stress in the surroundings of the laser induced weld seams, which is proven by measurements of the stress-induced birefringence.

View Article and Find Full Text PDF

Background: Brain metastases are most common in adults with lung cancer, predicting uniformly poor patient outcome, with a median survival of only months. Despite their frequency and severity, very little is known about tumorigenesis in brain metastases.

Methods: We applied previously developed primary solid tumor-initiating cell models to the study of brain metastases from the lung to evaluate the presence of a cancer stem cell population.

View Article and Find Full Text PDF

Optical side-effects of fs-laser treatment in refractive surgery are investigated by means of a model eye. We show that rainbow glare is the predominant perturbation, which can be avoided by randomly distributing laser spots within the lens. For corneal applications such as fs-LASIK, even a regular grid with spot-to-spot distances of ~3 µm is sufficient to minimize rainbow glare perception.

View Article and Find Full Text PDF

We show, numerically and experimentally, that the presence of weak disorder results in an enhanced energy distribution of an initially localized wave-packet, in one- and two-dimensional finite lattices. The addition of a focusing nonlinearity facilitates the spreading effect even further by increasing the wave-packet effective size. We find a clear transition between the regions of enhanced spreading (weak disorder) and localization (strong disorder).

View Article and Find Full Text PDF

Long-range correlation--the non-local interdependence of distant events--is a crucial feature in many natural and artificial environments. In the context of solid state physics, impurity spins in doped spin chains and ladders with antiferromagnetic interaction are a prominent manifestation of this phenomenon, which is the physical origin of the unusual magnetic and thermodynamic properties of these materials. It turns out that such systems are described by a one-dimensional Dirac equation for a relativistic fermion with random mass.

View Article and Find Full Text PDF

Background: Measuring disease and injury burden in populations requires a composite metric that captures both premature mortality and the prevalence and severity of ill-health. The 1990 Global Burden of Disease study proposed disability-adjusted life years (DALYs) to measure disease burden. No comprehensive update of disease burden worldwide incorporating a systematic reassessment of disease and injury-specific epidemiology has been done since the 1990 study.

View Article and Find Full Text PDF

Background: Non-fatal health outcomes from diseases and injuries are a crucial consideration in the promotion and monitoring of individual and population health. The Global Burden of Disease (GBD) studies done in 1990 and 2000 have been the only studies to quantify non-fatal health outcomes across an exhaustive set of disorders at the global and regional level. Neither effort quantified uncertainty in prevalence or years lived with disability (YLDs).

View Article and Find Full Text PDF

We propose photonic lattices with segmentation-based linear self imaging as integrated optical limiters. Starting from unity transmission in the linear regime, nonlinear delocalization leads to a continuous decrease of the overall transmission for increasing input powers. The diffractive propagation between input and output port offers the additional benefit of substantially decreased nonlinear spectral distortions.

View Article and Find Full Text PDF

A detailed study of the influence of the pulse duration, from the femtosecond to the nanosecond regime, on the evolution of the hole shape and depth during percussion drilling in silicon is presented. Real-time backlight imaging of the hole development is obtained for holes up to 2 mm deep with aspect ratios extending to 25:1. For low pulse energies, the hole-shape and drilling characteristics are similar for femtosecond, picoseconds and nanosecond regimes.

View Article and Find Full Text PDF

Objectives: To provide an in-depth analysis of outcome measures used in the evaluation of chronic disease self-management programs consistent with the Stanford curricula.

Methods: Based on a systematic review on self-management programs, effect sizes derived from reported outcome measures are categorized according to the quality of life appraisal model developed by Schwartz and Rapkin which classifies outcomes from performance-based measures (e.g.

View Article and Find Full Text PDF

Purpose: To carry out a systematic review of program outcomes used in the evaluation of group-based self-management interventions aimed at people with arthritis and other chronic conditions.

Methods: The systematic search was performed across databases MEDLINE, EMBASE, CINAHL, and PsycINFO. Both between-group and within-group effect sizes (ES) were calculated.

View Article and Find Full Text PDF

Brain tumors are typically comprised of morphologically diverse cells that express a variety of neural lineage markers. Only a relatively small fraction of cells in the tumor with stem cell properties, termed brain tumor initiating cells (BTICs), possess an ability to differentiate along multiple lineages, self-renew, and initiate tumors in vivo. We applied culture conditions originally used for normal neural stem cells (NSCs) to a variety of human brain tumors and found that this culture method specifically selects for stem-like populations.

View Article and Find Full Text PDF

We report the first experimental implementation of Glauber-Fock oscillator lattices. Bloch-like revivals are observed in these optical structures in spite of the fact that the photonic array is effectively semi-infinite and the waveguide coupling is not uniform. This behavior is entirely analogous to the dynamics exhibited by a driven quantum harmonic oscillator.

View Article and Find Full Text PDF

We fabricated stochastic antireflective structures (ARS) and analyzed their stability against high power laser irradiation and high temperature annealing. For 8 ps pulse duration and 1030 nm wavelength we experimentally determined their laser induced damage threshold to 4.9 (±0.

View Article and Find Full Text PDF