Second-order intensity correlations from incoherent emitters can reveal the Fourier transform modulus of their spatial distribution, but retrieving the phase to enable completely general Fourier inversion to real space remains challenging. Phase retrieval via the third-order intensity correlations has relied on special emitter configurations which simplified an unaddressed sign problem in the computation. Without a complete treatment of this sign problem, the general case of retrieving the Fourier phase from a truly arbitrary configuration of emitters is not possible.
View Article and Find Full Text PDFWe have observed details of the internal motion and dissociation channels in photoexcited carbon disulfide (CS) using time-resolved x-ray scattering (TRXS). Photoexcitation of gas-phase CS with a 200 nm laser pulse launches oscillatory bending and stretching motion, leading to dissociation of atomic sulfur in under a picosecond. During the first 300 fs following excitation, we observe significant changes in the vibrational frequency as well as some dissociation of the C-S bond, leading to atomic sulfur in the both D and P states.
View Article and Find Full Text PDFThe unique crystallization properties of the antenna protein C-phycocyanin (C-PC) from the thermophilic cyanobacterium Thermosynechococcus elongatus are reported and discussed. C-PC crystallizes in hundreds of significantly different conditions within a broad pH range and in the presence of a wide variety of precipitants and additives. Remarkably, the crystal dimensions vary from a few micrometres, as used in serial crystallography, to several hundred micrometres, with a very diverse crystal morphology.
View Article and Find Full Text PDFJ Phys Chem Lett
July 2019
Optoelectronic devices made from colloidal quantum dots (CQDs) often take advantage of the combination of tunable quantum-confined optical properties and carrier mobilities of strongly coupled systems. In this work, first-principles calculations are applied to investigate the electronic, optical, and transport properties of PbS CQD superlattices. Our results show that even in the regime of strong necking and fusing between PbS CQDs, quantum confinement can be generally preserved.
View Article and Find Full Text PDFA novel approach to fabricate supercapacitors (SCs) via vapor printing, specifically oxidative chemical vapor deposition (oCVD), is demonstrated. Compared to stacking multiple layers into a SC, this method enables the monolithic integration of all components into a single-sheet substrate, minimizing the inactive materials and eliminating the possibility of multilayer delamination. Electrodes comprised of pseudocapacitive material, poly(3,4-ethylenedioxythiophene) (PEDOT), are deposited into both sides of a sheet of flexible porous substrate.
View Article and Find Full Text PDF