Gas chromatography-mass spectrometry (GC-MS) analysis after heptafluorobutyric anhydride (HFBA) derivatization was one of the published methods used for the quantification of ephedrine (EP) and pseudoephedrine (PE) in urine. This method allows the clear separation of the derivatized diastereoisomers on a methyl-silicone-based column. Recently the authors came across a human urine sample with apparently high levels (µg/ml) of EP and PE upon initial screening.
View Article and Find Full Text PDFLiquid chromatography/mass spectrometry (LC/MS) has been successfully applied to the detection of anabolic steroids in biological samples. However, the sensitive detection of saturated hydroxysteroids, such as androstanediols, by electrospray ionisation (ESI) is difficult because of their poor ability to ionise. In view of this, chemical derivatisation has been used to enhance the detection sensitivity of hydroxysteroids by LC/MS.
View Article and Find Full Text PDFRecombinant human erythropoietin (rhEPO), darbepoetin alfa (DPO) and methoxy polyethylene glycol-epoetin beta (PEG-EPO) are synthetic analogues of the endogenous hormone erythropoietin (EPO). These erythropoiesis-stimulating agents have the ability to stimulate the production of red blood cells and are commercially available for the treatment of anaemia in humans. These drugs are understood to have performance-enhancing effects on human athletes due to their stimulation of red blood cell production, thereby improving delivery of oxygen to the muscle tissues.
View Article and Find Full Text PDFA multi-target high-throughput liquid chromatography-tandem mass spectrometry (LC-MS-MS) method for the detection of low ppt to low ppb levels of anabolic steroids, corticosteroids, anti-diabetics, and non-steroidal anti-inflammatory drugs (NSAIDs) in equine plasma was developed for the purpose of doping control. Plasma samples were first deproteinated by addition of trichloroacetic acid. Drugs were then extracted by solid-phase extraction (SPE) using Bond Elut Certify cartridges, and the extracts were analysed by a triple-quadrupole/linear ion trap LC-MS-MS instrument in positive electrospray ionization (+ESI) mode with selected reaction monitoring (SRM) scan function.
View Article and Find Full Text PDFQuantitative determination, particularly for threshold substances in biological samples, is much more demanding than qualitative identification. A proper assessment of any quantitative determination is the measurement uncertainty (MU) associated with the determined value. The International Standard ISO/IEC 17025, "General requirements for the competence of testing and calibration laboratories", has more prescriptive requirements on the MU than its superseded document, ISO/IEC Guide 25.
View Article and Find Full Text PDFThis paper reports two highly efficient liquid chromatography-mass spectrometry (LC-MS) methods for the screening of anabolic steroids, corticosteroids, and acidic drugs for the purpose of doping control in equine sports. Sample extraction was performed using a mixed-mode C8-SCX solid-phase extraction (SPE) cartridge. The first eluted fraction (acidic/neutral fraction) was base-washed and the resulting organic extract was used for the screening of anabolic steroids and corticosteroids by LC-MS using multiple reaction monitoring (MRM) in the positive electrospray ionisation (ESI) mode.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
October 2005
This paper describes two high-throughput liquid chromatography-tandem mass spectrometry (LC-MS-MS) methods for the screening of two important classes of drugs in equine sports, namely corticosteroids and basic drugs, at low ppb levels in horse urine. The method utilized a high efficiency reversed-phase LC column (3.3 cm L x 2.
View Article and Find Full Text PDFAnabolic steroids have the capability of improving athletic performance and are banned substances in the Olympic games as well as in horseracing and equestrian competitions. The control of their abuse in racehorses is traditionally performed by detecting the presence of anabolic steroids and/or their metabolite(s) in urine samples using gas chromatography-mass spectrometry (GC-MS). However, this approach usually requires tedious sample processing and chemical derivatisation steps and could be very insensitive in detecting certain steroids.
View Article and Find Full Text PDF