MicroRNAs (miRNAs) are non-coding, endogenous small single-stranded RNA molecules involved in post-transcriptional regulation of gene expression. It has been demonstrated that dysregulation of miRNA plays a major role in tumor formation, proliferation, and metastasis. Therefore, the delivery of anti-miRNA oligonucleotides to block the activity of these oncogenic miRNAs is a high-potential anti-cancer therapy approach.
View Article and Find Full Text PDFNucleic acid therapeutics are promising alternatives to conventional anti-cancer therapy, such as chemotherapy and radiation therapy. While conventional therapies have limitations, such as high side effects, low specificity, and drug resistance, nucleic acid therapeutics work at the gene level to eliminate the cause of the disease. Nucleic acid therapeutics treat diseases in various forms and using different mechanisms, including plasmid DNA (pDNA), small interfering RNA (siRNA), anti-microRNA (anti-miR), microRNA mimics (miRNA mimic), messenger RNA (mRNA), aptamer, catalytic nucleic acid (CNA), and CRISPR cas9 guide RNA (gRNA).
View Article and Find Full Text PDFDNAzymes are DNA oligonucleotides that have catalytic activity without the assistance of protein enzymes. In particular, RNA-cleaving DNAzymes were considered as ideal candidates for gene therapy due to their unique characteristics. Nevertheless, efforts to use DNAzyme as a gene therapeutic agent are limited by issues such as their low physiological stability in serum and intracellular delivery efficiency.
View Article and Find Full Text PDFRecent decades have experienced tough situations due to the lack of reliable diagnostic facilities. The most recent cases occurred during the pandemic, where researchers observed the lack of diagnostic facilities with precision. Microorganisms and viral disease's ability to escape diagnosis has been a global challenge.
View Article and Find Full Text PDFAptamers have been spotlighted as promising bio-recognition elements because they can be tailored to specific target molecules, bind to targets with a high affinity and specificity, and are easy to chemically synthesize and introduce functional groups to. In particular, fluorescent aptasensors are widely used in biological applications to diagnose diseases as well as prevent diseases by detecting cancer cells, viruses, and various biomarkers including nucleic acids and proteins as well as biotoxins and bacteria from food because they have the advantages of a high sensitivity, selectivity, rapidity, a simple detection process, and a low price. We introduce screening methods for isolating aptamers with q high specificity and summarize the sequences and affinities of the aptamers in a table.
View Article and Find Full Text PDFBiosensors (Basel)
August 2023
miRNAs are endogenous small, non-coding RNA molecules that function in post-transcriptional regulation of gene expression. Because miRNA plays a pivotal role in maintaining the intracellular environment, and abnormal expression has been found in many cancer diseases, detection of miRNA as a biomarker is important for early diagnosis of disease and study of miRNA function. However, because miRNA is present in extremely low concentrations in cells and many types of miRNAs with similar sequences are mixed, traditional gene detection methods are not suitable for miRNA detection.
View Article and Find Full Text PDFNanotechnology and polymer engineering are navigating toward new developments to control and overcome complex problems. In the last few decades, polymer engineering has received researchers' attention and similarly, polymeric network-engineered structures have been vastly studied. Prior to therapeutic application, early and rapid detection analyses are critical.
View Article and Find Full Text PDFTechnol Cancer Res Treat
May 2023
Cancer disease has outgrown a life-threatening disease. Having reference to preceding reports provided by the International Agency for Research on Cancer, an estimated 9.6 million deaths transpired from cancer worldwide in 2018.
View Article and Find Full Text PDFCancer therapies based on chemotherapeutic drug delive ries have been the most facilitated studies. Recently, peptide drugs have emerged as anticancer drugs due to their less immunogenicity and lower production costs compared with other synthetics. However, still, the side effects of these chemotherapeutics on healthy tissues have been a great concern to deal with, and these side effects are usually caused by off-targeted delivery and unwanted leakage.
View Article and Find Full Text PDFIn attempts to effectively improve RNAi function, we herein report a new RNAi approach using X-shaped RDNA and Dgel (RNA interfering DNA hydrogel, Ri-Dgel). X-shaped RDNA is a 4 branched nanostructure which was composed of three dsDNA branches and one dsRNA branch, and the structure was made by annealing partially complementary ssDNAs and chimeric RNA-DNA oligonucleotides. Ri-Dgel was synthesized through the ligation of the X-shaped RDNAs using their palindromic sticky ends.
View Article and Find Full Text PDFNoble metals have always fascinated researchers due to their feasible and facile approach to plasmonics. Especially the extensive utilization of gold (Au) has been found in biomedical engineering, microelectronics, and catalysis. Surface plasmonic resonance (SPR) sensors are achievable by employing plasmonic nanoparticles.
View Article and Find Full Text PDFIn the era of nanotechnology, the synthesis of nanomaterials for advanced applications has grown enormously. Effective therapeutics and functionalization of effective drugs using nano-vehicles are considered highly productive and selectively necessary. Polymeric nanomaterials have shown their impact and influential role in this process.
View Article and Find Full Text PDFStimuli-responsive nanoparticles are favorable for improving the selective delivery and rational vocation that easily avoids the undesirable barriers or side effects, leading to a further improved therapeutic efficiency. Furthermore, multifunctional nanomaterials have been extensively developed as attractive candidates for theranostic reagents for cancer treatment. In this article, we developed reversibly pH-responsive gold nanoparticles (AuNPs) with an enhanced Raman scattering signal as well as an efficient photothermal effect and demonstrated their applications as a theranostic reagent for cancer treatment.
View Article and Find Full Text PDFA continuous-flow microchip enabling high-accuracy DNA analysis was developed. Serial consecutive analysis for multiple amplified DNA samples was demonstrated. The sample segments were continuously introduced to the microchip from the PCR device which was interfaced to the microchip through capillary tubing.
View Article and Find Full Text PDFMicroenvironment responsive nanomaterials are attractive for therapeutic applications with regional specificity. Here we report pH responsive gold nanoparticles which are designed to aggregate in acidic condition similar to cancer environment and returned to its original disassembled states in a physiological pH. The pH responsive behavior of the particles is derived by change of electrostatic interaction among the particles where attraction and repulsion play a major role in low and high pH of the environment, respectively.
View Article and Find Full Text PDFRNA interference (RNAi) is a mechanism in which small interfering RNA (siRNA) silences a target gene. Herein, we describe a DNA hydrogel capable of producing siRNA and interfering with protein expression. This RNAi-exhibiting gel (termed I-gel for interfering gel) consists of a plasmid carrying the gene transcribing siRNA against the target mRNA as part of the gel scaffold.
View Article and Find Full Text PDFAnal Bioanal Chem
September 2016
A parallel-processing four-station polymerase chain reaction (PCR) device has been developed, which performs continuous-flow PCR without optimization of the annealing temperature. Since the annealing temperature of each station can be controlled independently, the device covers an annealing temperature range of 50-68 °C, which is wide enough to perform PCR for any DNA fragment regardless of its optimum annealing condition. This arrangement lets us continuously obtain an amplified amount of a DNA fragment at least from one of the stations.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
February 2016
We present a new class of electrically conductive, mechanically moldable, and thermally self-healable hybrid hydrogels. The hybrid gels consist of polypyrrole and agarose as the conductive component and self-healable matrix, respectively. By using the appropriate oxidizing agent under conditions of mild temperature, the polymerization of pyrrole occurred along the three-dimensional network of the agarose hydrogel matrix.
View Article and Find Full Text PDFMicrofluidic devices have been extensively developed as methods for microscale materials fabrication. It has also been adopted for polymeric microsphere fabrication and in situ drug encapsulation. Here, we employed multi-inlet microfluidic channels for DNA hydrogel microsphere formation and in situ protein encapsulation.
View Article and Find Full Text PDFA DNA hydrogel is reported as a delivery vehicle for gold nanorods and doxorubicin. The two photothermal and chemo cancer agents were co-loaded using electrostatic and DNA binding interactions, respectively. Light-triggered and highly synergistic combination cancer therapy was demonstrated in cellular and animal models.
View Article and Find Full Text PDFAssembled AuNPs in a DNA hydrogel (Dgel) showed strongly coupled plasmon modes, and the Dgel vehicle can co-load anticancer drugs such as doxorubicin (Dox) as a light-controlled releasing cargo by DNA intercalations. Upon laser excitation, local heat shock generation was accompanied by the release of Dox. A highly synergistic combination of thermo- and chemotherapy was demonstrated in cellular and animal models.
View Article and Find Full Text PDFConductive hydrogels are a class of composite materials that consist of hydrated and conducting polymers. Due to the mechanical similarity to biointerfaces such as human skin, conductive hydrogels have been primarily utilized as bioelectrodes, specifically neuroprosthetic electrodes, in an attempt to replace metallic electrodes by enhancing the mechanical properties and long-term stability of the electrodes within living organisms. Here, we report a conductive, smart hydrogel, which is thermoplastic and self-healing owing to its unique properties of reversible liquefaction and gelation in response to thermal stimuli.
View Article and Find Full Text PDFStructural analysis of branched DNA molecules (BDM) is important as model systems for DNA junctions and also as building units for DNA assembly. Although there have been efforts to study the structures of BDM, label-free solution structures have not been well determined yet. Here, we used a combination of synchrotron-based experimental tools and computational simulation to study the global structures of label-free BDM in solution.
View Article and Find Full Text PDFGraphene has received considerable attention in both scientific and technological areas due to its extraordinary material properties originating from the atomically single- or small number-layered structure. Nevertheless, in most scalable solution-based syntheses, graphene suffers from severe restacking between individual sheets and thus loses its material identity and advantages. In the present study, we have noticed the intercalated water molecules in the dried graphene oxide (GO) as a critical mediator to such restacking and thus eliminated the hydrogen bonding involving the intercalated water by treating GO with melamine resin (MR) monomers.
View Article and Find Full Text PDFWe report a nanoparticle-based probe that can be used for a "turn-on" theragnostic agent for simultaneous Raman imaging/diagnosis and photothermal therapy. The agent consists of a 10 nm spherical gold nanoparticle (NP) with pH-responsive ligands and Raman probes on the surface. They are engineered to exhibit the surface with both positive and negative charges upon mildly acidic conditions, which subsequently results in rapid aggregations of the gold NPs.
View Article and Find Full Text PDF