The development and the use of fluorinated polyproline-type II (PPII) foldamers are still underexplored. Herein, trifluoromethyl pseudoprolines have been incorporated into polyproline backbones without affecting their PPII helicity. The ability of the trifluoromethyl groups to increase hydrophobicity and to act as F NMR probes is demonstrated.
View Article and Find Full Text PDFThe relationship between prion propagation and the generation of neurotoxic species and clinical onset remains unclear. Several converging lines of evidence suggest that interactions with lipids promote various precursors to form aggregation-prone states that are involved in amyloid fibrils. Here, we compared the cytotoxicities of different soluble isolated oligomeric constructs from murine full-length PrP and from the restricted helical H2H3 domain with their effects on lipid vesicles.
View Article and Find Full Text PDFThe prion protein (PrP) misfolds and assembles into a wide spectrum of self-propagating quaternary structures, designated PrP. These various PrP superstructures can be functionally different, conferring clinically distinctive symptomatology, neuropathology and infectious character to the associated prion diseases. However, a satisfying molecular basis of PrP structural diversity is lacking in the literature.
View Article and Find Full Text PDFSoluble oligomers of prion proteins (PrP), produced during amyloid aggregation, have emerged as the primary neurotoxic species, instead of the fibrillar end-products, in transmissible spongiform encephalopathies. However, whether the membrane is among their direct targets, that mediate the downstream adverse effects, remains a question of debate. Recently, questions arise from the formation of membrane-active oligomeric species generated during the β-aggregation pathway, either in solution, or in lipid environment.
View Article and Find Full Text PDFNerve Growth Factor is an essential protein that supports neuronal survival during development and influences neuronal function throughout adulthood, both in the central and peripheral nervous system. The unprocessed precursor of NGF, proNGF, seems to be endowed with biological functions distinct from those of the mature protein, such as chaperone-like activities and apoptotic and/or neurotrophic properties. We have previously suggested, based on Small Angle X-ray Scattering data, that recombinant murine proNGF has features typical of an intrinsically unfolded protein.
View Article and Find Full Text PDFJ Colloid Interface Sci
April 2011
The adsorption of the insecticidal Cry1Aa protein from Bacillus thuringiensis (Bt-toxin) on a model clay surface was studied to understand the structural changes of the protein induced by the clay surface. We studied the adsorption of the monomeric and soluble oligomeric forms of the Cry1Aa toxin as a function of pH and ionic strength conditions on montmorillonite, which is an electronegative phyllosilicate. Cry1Aa secondary structure was determined from the amide I' FTIR absorption profiles.
View Article and Find Full Text PDFWe studied the kinetics of adsorption of alexa-labeled Bt toxin Cry1Aa, in monomer and oligomer states, on muscovite mica, acid-treated hydrophilic glass, and hydrophobized glass, in the configuration of laminar flow of solution in a slit. Normal confocal fluorescence through the liquid volume allows the visualization of the concentration in solution over the time of adsorption, in addition to the signal due to the adsorbed molecules at the interface. The solution signal is used as calibration for estimation of interfacial concentration.
View Article and Find Full Text PDFThe propensity of the prion protein (PrP) to adopt different structures is a clue to its pathological behavior. The determination of the region involved in the PrP(C) to PrP(Sc) conversion is fundamental for the understanding of the mechanisms underlying this process at the molecular level. In this paper, the polymerization of the helical H2H3 domain of ovine PrP (OvPrP) was compared to the full-length construct (using chromatography and light scattering).
View Article and Find Full Text PDFThe influenza A virus PB1-F2 protein, encoded by an alternative reading frame in the PB1 polymerase gene, displays a high sequence polymorphism and is reported to contribute to viral pathogenesis in a sequence-specific manner. To gain insights into the functions of PB1-F2, the molecular structure of several PB1-F2 variants produced in Escherichia coli was investigated in different environments. Circular dichroism spectroscopy shows that all variants have a random coil secondary structure in aqueous solution.
View Article and Find Full Text PDFThe conversion of normal cellular prion protein (PrP) into its pathological isoform, scrapie PrP, may occur at the cell surface or, more probably, in late endosomes. The early events leading to the structural conversion of PrP appear to be related to the presence of more or less stable soluble oligomers, which might mediate neurotoxicity. In the current study, we investigate the interaction of alpha-rich PrP monomers and beta-rich size-exclusion-chromatography-purified PrP oligomers with lipid membranes.
View Article and Find Full Text PDFWe propose a representation of initial adsorption kinetic constant as a function of convection in a slit flow cell device, averaged over some restricted length of a wall acting as a sensor. The complete domain from transport-control to surface reaction control is included. The intercepts with axes give access to adsorption constant and solute diffusion coefficient.
View Article and Find Full Text PDFThe respiratory syncytial virus (RSV) M2-1 protein is an essential cofactor of the viral RNA polymerase complex and functions as a transcriptional processivity and antitermination factor. M2-1, which exists in a phosphorylated or unphosphorylated form in infected cells, is an RNA-binding protein that also interacts with some of the other components of the viral polymerase complex. It contains a CCCH motif, a putative zinc-binding domain that is essential for M2-1 function, at the N terminus.
View Article and Find Full Text PDFNeuroglobin (Ngb) and the cellular prion protein (PrP(c)), proteins of unknown function in the nervous system, are known to be expressed in the retina and have been observed in different rat retinal cells. The retina is the site of the highest concentration for Ngb, a heme protein of similar size and conformation to myoglobin. In this study, we demonstrated by immunohistochemical analysis of retinal colocalization of Ngb and PrP(c) in the ganglion cell layer.
View Article and Find Full Text PDFPrion diseases are a group of neurodegenerative diseases that can arise spontaneously, be inherited, or acquired by infection in mammals. The propensity of the prion protein to adopt different structures is a clue to its pathological and perhaps biological role too. While the normal monomeric PrP is well characterized, the misfolded conformations responsible for neurodegeneration remain elusive despite progress in this field.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
May 2008
Fibronectin (FN), a large glycoprotein found in body fluids and in the extracellular matrix, plays a key role in numerous cellular behaviours. We investigate FN adsorption onto hydrophilic bare silica and hydrophobic polystyrene (PS) surfaces using Fourier transform infrared spectroscopy-attenuated total reflection (FTIR-ATR) in aqueous medium. Adsorption kinetics using different bulk concentrations of FN were followed for 2h and the surface density of adsorbed FN and its time-dependent conformational changes were determined.
View Article and Find Full Text PDFJ Colloid Interface Sci
April 2006
In this paper, we present results of ATR-IR spectroscopy of uranyl complexes adsorbed on hematite. This method allowed the in situ recording of infrared spectra of uranyl sorbed on hematite in presence of aqueous solution and to detect one peak at 906 cm(-1) attributed to the antisymmetric O=U=O stretching. The intensity of the peak increases with pH, but its shape does not evolve, indicating that the same surface species is responsible for the sorption in the pH range 5-8.
View Article and Find Full Text PDFStudying the mechanism of retention of ovine prion protein in soils will tackle the environmental aspect of potential dissemination of scrapie infectious agent. We consider the surface-induced conformational changes that the recombinant ovine prion protein (ovPrP) may undergo under different pH conditions when interacting with soil minerals of highly adsorptive capacities such as montmorillonite. The conformational states of the full-length ovine prion protein adsorbed on the electronegative clay surface are compared to its solvated state in deuterated buffer in the pD range 3.
View Article and Find Full Text PDFThe binding of horse heart cytochrome c (cyt-c) and Thermus thermophilus cytochrome c(552) (cyt-c(552)) to dioleoyl phosphatidylglycerol (DOPG) vesicles was investigated using Fourier transform infrared (FTIR) spectroscopy and turbidity measurements. FTIR spectra revealed that the tertiary structures of both cytochromes became more open when bound to DOPG vesicles, but this was more pronounced for cyt-c. Their secondary structures were unchanged.
View Article and Find Full Text PDFThe effects of desiccation and rehydration cycles encountered by extracellular enzymes in soils are studied on -chymotrypsin adsorbed on montmorillonite. The controlled hygrometric FTIR cell used in this study enables to monitor drying and rehydration steps undergone by the -chymotrypsin-montmorillonite suspension or by the enzyme alone. Relative humidity (RH) determines the amount of deuterated water in the FTIR cell atmosphere.
View Article and Find Full Text PDFThe antimicrobial activity of cationic amphipathic peptides is due mainly to the adsorption of peptides onto target membranes, which can be modulated by such physicochemical parameters as charge and hydrophobicity. We investigated the structure of dermaseptin B2 (Drs B2) at the aqueous/synthetic solid support interface and its adsorption kinetics using attenuated total reflection Fourier transform infrared spectroscopy and surface plasmon resonance. We determined the conformation and affinity of Drs B2 adsorbed onto negatively charged (silica or dextran) and hydrophobic supports.
View Article and Find Full Text PDFFTIR with attenuated total reflectance spectroscopy was used to study in situ adsorption of enzymes at water-solid interfaces to better understand how conformational changes may monitor enzymatic activity. Because the adsorption process depends on hydrophobic and electrostatic interactions, conformational changes were studied as a function of the nature of the adsorbing substrates, which are hydrophobic or hydrophilic in character. The adsorption kinetics of two examples of serine enzymes, alpha-chymotrypsin (alpha-chym) and Humicola lanuginosa lipase (HLL), were studied.
View Article and Find Full Text PDFThis study was done to better understand how lipases are activated at an interface. We investigated the conformational and solvation changes occurring during the adsorption of Humicola lanuginosa lipase (HLL) onto a hydrophobic surface using Fourier transform infrared-attenuated total reflection spectroscopy. The hydrophobic surfaces were obtained by coating silicon attenuated total reflection crystal with octadecyltrichlorosilane.
View Article and Find Full Text PDF