Publications by authors named "Nohyun Lee"

Despite the many promising properties of perovskite solar cells (PSCs), ultraviolet (UV)-induced degradation remains a critical issue for their long-term reliability. One potential solution is the selective inhibition of UV exposure before it reaches the PSCs; however, this approach leads to a reduction in PSC efficiency due to limited photon utilization. In this regard, here a universally applicable method is presented to address the UV stability issue of PSCs without compromising their high-level efficiency while also providing device flexibility.

View Article and Find Full Text PDF

Ceria-based nanoparticles are versatile in treating various inflammatory diseases, but their feasibility in clinical translation is undermined by safety concerns and a limited delivery system. Meanwhile, the idiopathic nature of inflammatory bowel disease (IBD) calls for a wider variety of therapeutics via moderation of the intestinal immune system. In this regard, the synthesis and oral formulation of iron-ceria nanoparticles (CF NPs) with enhanced nanozymic activity and lower toxicity risk than conventional ceria-based nanoparticles are reported.

View Article and Find Full Text PDF

Background: Iron oxide nanoparticles (IONPs) have been cleared by the Food and Drug Administration (FDA) for various clinical applications, such as tumor-targeted imaging, hyperthermia therapy, drug delivery, and live-cell tracking. However, the application of IONPs as T1 contrast agents has been restricted due to their high r2 values and r2/r1 ratios, which limit their effectiveness in T1 contrast enhancement. Notably, IONPs with diameters smaller than 5 nm, referred to as extremely small-sized IONPs (ESIONs), have demonstrated potential in overcoming these limitations.

View Article and Find Full Text PDF

Rare-earth-based double perovskite (DP) X-ray scintillators have gained significant importance with low detection limits in medical imaging and radiation detection owing to their high light yield (LY) and remarkable spatial resolution. Herein, we report the synthesis of 3D double perovskite (DP) crystals, namely, CsNaGdCl and Tb-CsNaGdCl using hydrothermal reaction. CsNaGdCl DP single crystals exhibited a blue self-trapped exciton (STE) emission at 470 nm under ultraviolet (265 nm) excitation with a photoluminescence quantum yield (PLQY) of 8.

View Article and Find Full Text PDF

Commencing with the breakdown of immune tolerance, multiple pathogenic factors, including synovial inflammation and harmful cytokines, are conjointly involved in the progression of rheumatoid arthritis. Intervening to mitigate some of these factors can bring a short-term therapeutic effect, but other unresolved factors will continue to aggravate the disease. Here we developed a ceria nanoparticle-immobilized mesenchymal stem cell nanovesicle hybrid system to address multiple factors in rheumatoid arthritis.

View Article and Find Full Text PDF

With the recent interest in the role of oxidative species/radicals in diseases, inorganic nanomaterials with redox activities have been extensively investigated for their potential use in nanomedicine. While many studies focusing on relieving oxidative stress to prevent pathogenesis and to suppress the progression of diseases have shown considerable success, another approach for increasing oxidative stress using nanomaterials to kill malignant cells has suffered from low efficiency despite its wide applicability to various targets. Chemodynamic therapy (CDT) is an emerging technique that can resolve such a problem by exploiting the characteristic tumour microenvironment to achieve high selectivity.

View Article and Find Full Text PDF

Simultaneous lactate metabolism inhibition and intracellular acidification (LIIA) is a promising approach for inducing tumor regression by depleting ATP. However, given the limited efficacy of individual metabolic modulators, a combination of various modulators is required for highly efficient LIIA. Herein, a co-delivery system that combines lactate transporter inhibitor, glucose oxidase, and O -evolving nanoparticles is proposed.

View Article and Find Full Text PDF

Single-atom nanozymes (SAzymes) are considered promising alternatives to natural enzymes. The catalytic performance of SAzymes featuring homogeneous, well-defined active structures can be enhanced through elucidating structure-activity relationship and tailoring physicochemical properties. However, manipulating enzymatic properties through structural variation is an underdeveloped approach.

View Article and Find Full Text PDF

The growing interest in nanomedicine over the last 20 years has carved out a research field called "nanocatalytic therapy," where catalytic reactions mediated by nanomaterials are employed to intervene in disease-critical biomolecular processes. Among many kinds of catalytic/enzyme-mimetic nanomaterials investigated thus far, ceria nanoparticles stand out from others owing to their unique scavenging properties against biologically noxious free radicals, including reactive oxygen species (ROS) and reactive nitrogen species (RNS), by exerting enzyme mimicry and nonenzymatic activities. Much effort has been made to utilize ceria nanoparticles as self-regenerating antioxidative and anti-inflammatory agents for various kinds of diseases, given the detrimental effects of ROS and RNS therein that need alleviation.

View Article and Find Full Text PDF

Cesium lead bromide perovskite nanocrystals (NCs) embedded in CsPbBr or CsPbBr matrices forming core/shell structures are promising luminescent materials that exhibit remarkable photoluminescence properties meeting the need in a wide range of applications while overcoming stability challenges. Here, we report the large-scale, ligand-free synthesis of dual-phase CsPbBr/CsPbBr microcrystals (MCs) using ultrasonication at room temperature, exhibiting a high photoluminescence quantum yield (PLQY) of 82.7% and good stability.

View Article and Find Full Text PDF

Nickel and nickel phosphide nanoparticles are highly useful in various fields, owing to their catalytic and magnetic properties. Although several synthetic protocols to produce nickel and nickel phosphide nanoparticles have been previously proposed, controllable synthesis of nanoparticles using these methods is challenging. Herein, we synthesized highly monodisperse nickel and nickel phosphide nanoparticles via thermal decomposition of nickel-oleylamine-phosphine complexes in organic solvents.

View Article and Find Full Text PDF

Vascular embolization is a non-surgical procedure used to treat diseases or morbid conditions related to blood vessels, such as bleeding, arteriovenous malformation, aneurysm, and hypervascular tumors, through the intentional occlusion of blood vessels. Among various types of embolic agents that have been applied, liquid embolic agents are gaining an increasing amount of attention owing to their advantages in distal infiltration into regions where solid embolic agents cannot reach, enabling more extensive embolization. Meanwhile, recent advances in biomaterials and technologies have also contributed to the development of novel liquid embolic agents that can resolve the challenges faced while using the existing embolic materials.

View Article and Find Full Text PDF

An urgent need in chemodynamic therapy (CDT) is to achieve high Fenton catalytic efficiency at small doses of CDT agents. However, simple general promotion of the Fenton reaction increases the risk of damaging normal cells along with the cancer cells. Therefore, a tailored strategy to selectively enhance the Fenton reactivity in tumors, for example, by taking advantage of the characteristics of the tumor microenvironment (TME), is in high demand.

View Article and Find Full Text PDF

Immunomodulation by radiotherapy (RT) is an emerging strategy for improving cancer immunotherapy. Nanomaterials have been employed as innovative tools for cancer therapy. This study aimed to investigate whether mesoporous silica nanoparticles (MSNs) enhance RT-mediated local tumor control and the abscopal effect by stimulating anti-cancer immunity.

View Article and Find Full Text PDF

Liquid embolic agents are considered the most promising for various embolization procedures because they enable deep penetration. For realizing effective procedures, the delivery of liquid embolic agents should be guided under X-ray imaging systems and the solidification time should be optimized for the specific indication. The biocompatibility of embolic agents is also crucial because they remain in the vessel after embolization.

View Article and Find Full Text PDF

We evaluated the effect of manganese ferrite nanoparticles (MFN) on radiosensitization and immunologic responses using the murine hepatoma cell line Hepa1-6 and the syngeneic mouse model. The clonogenic survival of Hepa1-6 cells was increased by hypoxia, while being restricted by ionizing radiation (IR) and/or MFN. Although MFN suppressed HIF-1α under hypoxia, the combination of IR and MFN enhanced apoptosis and DNA damage in Hepa1-6 cells.

View Article and Find Full Text PDF

A biosensor is an integrated receptor-transducer device, which can convert a biological response into an electrical signal. The design and development of biosensors have taken a center stage for researchers or scientists in the recent decade owing to the wide range of biosensor applications, such as health care and disease diagnosis, environmental monitoring, water and food quality monitoring, and drug delivery. The main challenges involved in the biosensor progress are (i) the efficient capturing of biorecognition signals and the transformation of these signals into electrochemical, electrical, optical, gravimetric, or acoustic signals (transduction process), (ii) enhancing transducer performance i.

View Article and Find Full Text PDF

Nanomaterials with antioxidant properties are promising for treating reactive oxygen species (ROS)-related diseases. However, maintaining efficacy at low doses to minimize toxicity is a critical for clinical applications. Tuning the surface strain of metallic nanoparticles can enhance catalytic reactivity, which has rarely been demonstrated in metal oxide nanomaterials.

View Article and Find Full Text PDF

This study evaluated the potential of iron oxide nanoparticle-loaded human embryonic stem cell (ESC)-derived spherical neural masses (SNMs) to improve the transportation of stem cells to the brain, ameliorate brain damage from intracerebral hemorrhage (ICH), and recover the functional status after ICH under an external magnetic field of a magnet attached to a helmet. At 24 h after induction of ICH, rats were randomly separated into three experimental groups: ICH with injection of phosphate-buffered saline (PBS group), ICH with intravenous injection of magnetosome-like ferrimagnetic iron oxide nanocubes (FION)-labeled SNMs (SNMs* group), and ICH with intravenous injection of FION-labeled SNMs followed by three days of external magnetic field exposure for targeted delivery by a magnet-embedded helmet (SNMs*+Helmet group). On day 3 after ICH induction, an increased Prussian blue-stained area and decreased swelling volume were observed in the SNMs*+Helmet group compared with that of the other groups.

View Article and Find Full Text PDF

Nanoparticles have been extensively used to deliver therapeutic drugs to tumor tissues through the extravasation of a leaky vessel via enhanced permeation and retention effect (EPR, passive targeting) or targeted interaction of tumor-specific ligands (active targeting). However, the therapeutic efficacy of drug-loaded nanoparticles is hampered by its heterogeneous distribution owing to limited penetration in tumor tissue. Inspired by the fact that cancer cells can recruit inflammatory immune cells to support their survival, we developed a click reaction-assisted immune cell targeting (CRAIT) strategy to deliver drug-loaded nanoparticles deep into the avascular regions of the tumor.

View Article and Find Full Text PDF

Poor O supply to the infiltrated immune cells in the joint synovium of rheumatoid arthritis (RA) up-regulates hypoxia-inducible factor (HIF-1α) expression and induces reactive oxygen species (ROS) generation, both of which exacerbate synovial inflammation. Synovial inflammation in RA can be resolved by eliminating pro-inflammatory M1 macrophages and inducing anti-inflammatory M2 macrophages. Because hypoxia and ROS in the RA synovium play a crucial role in the induction of M1 macrophages and reduction of M2 macrophages, herein, we develop manganese ferrite and ceria nanoparticle-anchored mesoporous silica nanoparticles (MFC-MSNs) that can synergistically scavenge ROS and produce O for reducing M1 macrophage levels and inducing M2 macrophages for RA treatment.

View Article and Find Full Text PDF

Tumor hypoxia is a major mechanism of resistance to radiation therapy (RT), which is associated with poor prognosis in affected cancer patients. Various approaches to treat hypoxic and radioresistant cancers, including pancreatic cancer, have shown limited success. Fucoidan, a polysaccharide from brown seaweed, has antitumor and antiangiogenesis activities.

View Article and Find Full Text PDF

We investigated the feasibility of using multifunctional FeO/TaO (core/shell) nanoparticles, developed for use in contrast agents for computed tomography (CT) and magnetic resonance imaging (MRI), as dose-enhancing radiosensitizers. First, to verify the detectability of FeO/TaO nanoparticles in imaging, in vivo tests were conducted. Approximately 600 mg kg of 19 nm-diameter FeO/TaO nanoparticles dispersed in phosphate-buffered saline was injected into the tail vein of six Balb/c mice used as tumour (4T1 mammary carcinoma cell) models.

View Article and Find Full Text PDF

Tuning the optical properties of Au nanostructures is of paramount importance for scientific interest and has a wide variety of applications. Since the surface plasmon resonance properties of Au nanostructures can be readily adjusted by changing their shape, many approaches for preparing Au nanostructures with various shapes have been reported to date. However, complicated steps or the addition of several reagents would be required to achieve shape control of Au nanostructures.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session0cgndrdl1atcmb9ruiifqqghtfabl291): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once