Clin Pharmacol Ther
December 2024
In the relentless pursuit of optimizing drug development, the intricate process of determining the ideal dosage unfolds. This involves "dose-finding" studies, crucial for providing insights into subsequent registration trials. However, the challenges intensify when tackling rare diseases.
View Article and Find Full Text PDFClin Pharmacol Ther
December 2024
Model-informed approaches provide a quantitative framework to integrate all available nonclinical and clinical data, thus furnishing a totality of evidence approach to drug development and regulatory evaluation. Maximizing the use of all available data and information about the drug enables a more robust characterization of the risk-benefit profile and reduces uncertainty in both technical and regulatory success. This offers the potential to transform rare diseases drug development, where conducting large well-controlled clinical trials is impractical and/or unethical due to a small patient population, a significant portion of which could be children.
View Article and Find Full Text PDFThe promise of viral vector-based gene therapy (GT) as a transformative paradigm for treating severely debilitating and life-threatening diseases is slowly coming to fruition with the recent approval of several drug products. However, they have a unique mechanism of action often necessitating a tortuous clinical development plan. Expertise in such complex therapeutic modality is still fairly limited in this emerging class of adeno-associated virus (AAV) vector-based gene therapies.
View Article and Find Full Text PDFBackground: Chronic hepatitis B (CHB) infection poses a significant burden to public health worldwide. Most cases are clinically silent until late in the disease course. The main goal of current therapy is to improve survival and quality of life by preventing disease progression to cirrhosis and liver failure, and consequently hepatocellular carcinoma development.
View Article and Find Full Text PDF