Despite the extensive literature revealing various core structures that can enhance the impact resistance of composite panels, a comparative study illustrating the difference in performance of the various cores under same loading conditions is missing. The aim of this study is to determine the optimal core structure and design in terms of energy absorption under low-velocity impact using both numerical simulations and experimental testing for validation. Response surface analysis was used to design the experiments and analyse the panel's behaviour.
View Article and Find Full Text PDFPyrolysis offers a sustainable and efficient approach to resource utilization and waste management, transforming organic materials into valuable products. The quality and distribution of the pyrolysis products highly depend on the constituents' properties and set process parameters. This research aims to investigate and model this dependency, offering decision-makers a tool to guide them when designing the process for a particular application.
View Article and Find Full Text PDFResearchers have extensively explored various approaches to enhance the blast resistance of structures, concentrating on optimizing structural designs and employing a wide range of materials. This research investigates the impact of incorporating water as a fluid within the core of tubular sandwich panels on blast mitigation effectiveness. The study systematically analyzes various panel configurations by altering key design parameters: the thickness of the face sheets, spacing between the core elements, and proportion of fluid within the core.
View Article and Find Full Text PDF