Biofilm formation transforms infections from acute to chronic, increasing patient mortality and significantly increasing healthcare costs. We are studying the prevalence of some virulence genes among methicillin resistant Staphylococcus aureus (MRSA) isolates relative to biofilm formation and the potential of photoactivated hypericin to treat these infections. Isolates were collected from three Egyptian governorates over seven months in 2011, 100 isolates were identified as MRSA.
View Article and Find Full Text PDFFrom the previous work (Part I), mucoadhesive formulae containing 5% CP/65% HPMC/30% lactose and 2% PC/68% HPMC/30% mannitol as well as formulae based on sodium carboxymethyl cellulose (SCMC) were selected. Medicated tablets were prepared using diltiazem hydrochloride (DZ) and metclopramide hydrochloride (MP) in two different doses (30 and 60 mg). The effect of drug and dose on the mucoadhesive properties and in-vitro drug release was evaluated.
View Article and Find Full Text PDFDifferent types of mucoadhesive polymers, intended for buccal tablet formulation, were investigated for their comparative mucoadhesive force, swelling behavior, residence time and surface pH. The selected polymers were carbopols (CP934, and CP940), polycarbophil (PC), sodium carboxymethyl cellulose (SCMC) and pectin representing the anionic type, while chitosan (Ch) as cationic polymer and hydroxypropylmethyl cellulose (HPMC) as a non-ionic polymer. Results revealed that polyacrylic acid derivatives (PAA) showed the highest bioadhesion force, prolonged residence time and high surface acidity.
View Article and Find Full Text PDFMucoadhesive patches for delivery of cetylpyridinium chloride (CPC) were prepared using polyvinyl alcohol (PVA), hydroxyethyl cellulose (HEC) and chitosan. Swelling and bioadhesive characteristics were determined for both plain and medicated patches. The results showed a remarkable increase in radial swelling (S(D)) after addition of the water-soluble drug (CPC) to the plain formulae.
View Article and Find Full Text PDFMucoadhesive patches containing 10mg miconazole nitrate were evaluated. The patches were prepared with ionic polymers, sodium carboxymethyl cellulose (SCMC) and chitosan, or non-ionic polymers, polyvinyl alcohol (PVA), hydroxyethyl cellulose (HEC) and hydroxypropylmethyl cellulose (HPMC). Convenient bioadhesion, acceptable elasticity, swelling and surface pH were obtained.
View Article and Find Full Text PDF