Substance use disorder (SUD) significantly increases the risk of neurotoxicity, inflammation, oxidative stress, and impaired neuroplasticity. The activation of inflammatory pathways by substances may lead to glial activation and chronic neuroinflammation, potentially mediated by the release of extracellular particles (EPs), such as extracellular condensates (ECs) and extracellular vesicles (EVs). These particles, which reflect the physiological, pathophysiological, and metabolic states of their cells of origin, might carry molecular signatures indicative of SUD.
View Article and Find Full Text PDFGlial cells provide physical and chemical support and protection for neurons and for the extracellular compartments of neural tissue through secretion of soluble factors, insoluble scaffolds, and vesicles. Additionally, glial cells have regenerative capacity by remodeling their physical microenvironment and changing physiological properties of diverse cell types in their proximity. Various types of aberrant glial and macrophage cells are associated with human diseases, disorders, and malignancy.
View Article and Find Full Text PDFOver sixty years, laser technologies have undergone a technological revolution and become one of the main tools in biomedicine, particularly in neuroscience, neurodegenerative diseases and brain tumors. Glioblastoma is the most lethal form of brain cancer, with very limited treatment options and a poor prognosis. In this study on rats, we demonstrate that glioblastoma (GBM) growth can be suppressed by photosensitizer-free laser treatment (PS-free-LT) using a quantum-dot-based 1267 nm laser diode.
View Article and Find Full Text PDFTraumatic brain injury (TBI) and severe blood loss resulting in hemorrhagic shock (HS) are each leading causes of mortality and morbidity worldwide, and present additional treatment considerations when they are comorbid (TBI+HS) as a result of competing pathophysiological responses. The current study rigorously quantified injury biomechanics with high precision sensors and examined whether blood-based surrogate markers were altered in general trauma as well as post-neurotrauma. Eighty-nine sexually mature male and female Yucatan swine were subjected to a closed-head TBI+HS (40% of circulating blood volume; = 68), HS only ( = 9), or sham trauma ( = 12).
View Article and Find Full Text PDFDiabetes mellitus (DM) is a chronic metabolic disease characterised by hyperglycaemia and glucose intolerance caused by impaired insulin action and/or defective insulin secretion. Long-term hyperglycaemia leads to various structural and functional microvascular changes within multiple tissues, including the brain, which involves blood-brain barrier alteration, inflammation and neuronal dysfunction. We have shown previously that drag-reducing polymers (DRP) improve microcirculation and tissue oxygen supply, thereby reducing neurologic impairment in different rat models of brain injury.
View Article and Find Full Text PDFIn the last several years, accumulating evidence indicates that noncoding RNAs, especially long-noncoding RNAs (lncRNAs) and microRNAs, play essential roles in regulating angiogenesis. However, the contribution of lncRNA-mediated competing-endogenous RNA (ceRNA) activity in the control of capillary sprouting from the pre-existing ones has not been described so far. Here, by exploiting the transcriptomic profile of VEGF-A-activated endothelial cells in a consolidate three-dimensional culture system, we identified a list of lncRNAs whose expression was modified during the sprouting process.
View Article and Find Full Text PDFGlioblastomas (GBM) are the most aggressive tumors originating in the brain. Histopathologic features include circuitous, disorganized, and highly permeable blood vessels with intermittent blood flow. These features contribute to the inability to direct therapeutic agents to tumor cells.
View Article and Find Full Text PDFEmbryonic stem cells (ES) are a valuable source of endothelial cells. By co-culturing ES cells with the stromal PA6 cells, the endothelial commitment can be achieved by adding exogenous FGF2 or BMP4. In this work, the molecular pathways that direct the differentiation of ES cells toward endothelium in response to FGF2 are evaluated and compared to those activated by BMP4.
View Article and Find Full Text PDFComput Struct Biotechnol J
June 2021
[This corrects the article DOI: 10.1016/j.csbj.
View Article and Find Full Text PDFInterferon-α (IFN-α) comprises a family of 13 cytokines involved in the modulation of antiviral, immune, and anticancer responses by orchestrating a complex transcriptional network. The activation of IFN-α signaling pathway in endothelial cells results in decreased proliferation and migration, ultimately leading to suppression of angiogenesis. In this study, we knocked-down the expression of seven established or candidate modulators of IFN-α response in endothelial cells to reconstruct a gene regulatory network and to investigate the antiangiogenic activity of IFN-α.
View Article and Find Full Text PDFAngiogenesis requires the temporal coordination of the proliferation and the migration of endothelial cells. Here, we investigated the regulatory role of microRNAs (miRNAs) in harmonizing angiogenesis processes in a three-dimensional in vitro model. We described a microRNA network which contributes to the observed down- and upregulation of proliferative and migratory genes, respectively.
View Article and Find Full Text PDFTranscription factor TFEB is thought to control cellular functions-including in the vascular bed-primarily via regulation of lysosomal biogenesis and autophagic flux. Here, we report that TFEB also orchestrates a non-canonical program that controls the cell cycle/VEGFR2 pathway in the developing vasculature. In endothelial cells, TFEB depletion halts proliferation at the G1-S transition by inhibiting the CDK4/Rb pathway.
View Article and Find Full Text PDFUnlabelled: Many of the existing three-dimensional (3D) cancer models in vitro fail to represent the entire complex tumor microenvironment composed of cells and extra cellular matrix (ECM) and do not allow a reliable study of the tumoral features and progression. In this paper we reported a strategy to produce 3D in vitro microtissues of pancreatic ductal adenocarcinoma (PDAC) for studying the desmoplastic reaction activated by the stroma-cancer crosstalk. Human PDAC microtissues were obtained by co-culturing pancreatic cancer cells (PT45) and normal or cancer-associated fibroblasts within biodegradable microcarriers in a spinner flask bioreactor.
View Article and Find Full Text PDFNeuronal pentraxins (NPTX) and their corresponding receptors (NPTXR) have been studied as synapse-associated proteins in the nervous system, but their role in cancer is largely unknown. By applying a multidisciplinary, high-throughput proteomic approach, we have recently identified a peptide ligand motif for targeted drug delivery to neuroblastoma. Here, we report the sequence similarity between this peptide and a conserved portion of the pentraxin domain that is involved in the homo- and hetero-oligomerization of NPTX2 and NPTXR.
View Article and Find Full Text PDFThe tyrosine kinase encoded by the MET oncogene is activated by gene mutation or amplification in tumors, which in most instances maintain addiction, i.e., dependency, to MET activation.
View Article and Find Full Text PDFObjective: Liver X receptors (LXRα, LXRβ) are master regulators of cholesterol homeostasis. In the endothelium, perturbations of cell cholesterol have an impact on fundamental processes. We, therefore, assessed the effects of LXR activation on endothelial functions related to angiogenesis in vitro and in vivo.
View Article and Find Full Text PDFBackground Aims: Bone marrow (BM)-derived cells appear to be a promising therapeutic source for the treatment of acute myocardial infarction (AMI). However, the quantity and quality of the cells to be used, along with the appropriate time of administration, still need to be defined. We thus investigated the use of BM CD34(+)-derived cells as cells suitable for a cell therapy protocol (CTP) in the treatment of experimental AMI.
View Article and Find Full Text PDFThe connections existing between vessels and nerves go beyond the structural architecture of vascular and nervous systems to comprise cell fate determination. The analysis of functional/molecular links that interconnect endothelial and neural commitments requires a model in which the two differentiation programs take place at the same time in an artificial controllable environment. To this regard, this work presents an in vitro model to differentiate embryonic stem (ES) cells simultaneously into mature neurons and endothelial cells.
View Article and Find Full Text PDFEmbryonic stem (ES) cells are pluripotent cells capable of differentiating in all the cell types present in a living organism. They derive from the inner cell mass of blastocysts of different species including humans. Given their unlimited potential, ES cells represent an invaluable resource of different cell types for transplantation and tissue engineering applications.
View Article and Find Full Text PDFAims: Liver X receptors alpha and beta (LXRalpha, LXRbeta) are key regulators of cholesterol homeostasis. The effects of LXR ligands on endothelial cells are largely unknown. While oxysterol LXR agonists can increase the endothelial-leukocyte interaction, synthetic LXR agonists are anti-atherogenic and anti-inflammatory.
View Article and Find Full Text PDFSeveral lines of evidence indicate that peripheral 5-HT2A receptors are involved in the development of inflammatory and neuropathic pain. However, their localization in sensory cell bodies is not accurately known. We therefore studied 5-HT2A receptor distribution in rat lumbar dorsal root ganglia using immunocytochemistry.
View Article and Find Full Text PDFThe observation that the architecture of the cardiovascular and nervous systems is drawn by common guidance cues and the closeness between neural progenitors and endothelial cells in the vascular niche strongly suggests the existence of links between endothelial and neural cell fates. We identified an embryonic stem cell-derived discrete, nonclonal cell population expressing the two vascular endothelial growth factor receptors neuropilin-1 (Nrp1) and Flk1 that differentiates in vitro toward endothelial or neural phenotypes depending on microenvironmental cues. When microinjected in the chick embryo, Nrp1(+) cells integrate within the host, developing vessels and brain, and acquire endothelial and neural markers, respectively.
View Article and Find Full Text PDF