Publications by authors named "Noga Dubi"

The α/β-hydrolase fold superfamily of proteins is composed of structurally related members that, despite great diversity in their catalytic, recognition, adhesion and chaperone functions, share a common fold governed by homologous residues and conserved disulfide bridges. Non-synonymous single nucleotide polymorphisms within the α/β-hydrolase fold domain in various family members have been found for congenital endocrine, metabolic and nervous system disorders. By examining the amino acid sequence from the various proteins, mutations were found to be prevalent in conserved residues within the α/β-hydrolase fold of the homologous proteins.

View Article and Find Full Text PDF

Although genetic variations in several genes encoding for synaptic adhesion proteins have been found to be associated with autism spectrum disorders, one of the most consistently replicated genes has been CNTNAP2, encoding for contactin-associated protein-like 2 (CASPR2), a multidomain transmembrane protein of the neurexin superfamily. Using immunofluorescence confocal microscopy and complementary biochemical techniques, we compared wild-type CASPR2 to 12 point mutations identified in individuals with autism. In contrast to the wild-type protein, localized to the cell surface, some of the mutants show altered cellular disposition.

View Article and Find Full Text PDF

The α/β hydrolase fold family is perhaps the largest group of proteins presenting significant structural homology with divergent functions, ranging from catalytic hydrolysis to heterophilic cell adhesive interactions to chaperones in hormone production. All the proteins of the family share a common three-dimensional core structure containing the α/β hydrolase fold domain that is crucial for proper protein function. Several mutations associated with congenital diseases or disorders have been reported in conserved residues within the α/β-hydrolase fold domain of cholinesterase-like proteins, neuroligins, butyrylcholinesterase and thyroglobulin.

View Article and Find Full Text PDF

Despite great functional diversity, characterization of the alpha/beta-hydrolase fold proteins that encompass a superfamily of hydrolases, heterophilic adhesion proteins, and chaperone domains reveals a common structural motif. By incorporating the R451C mutation found in neuroligin (NLGN) and associated with autism and the thyroglobulin G2320R (G221R in NLGN) mutation responsible for congenital hypothyroidism into NLGN3, we show that mutations in the alpha/beta-hydrolase fold domain influence folding and biosynthetic processing of neuroligin3 as determined by in vitro susceptibility to proteases, glycosylation processing, turnover, and processing rates. We also show altered interactions of the mutant proteins with chaperones in the endoplasmic reticulum and arrest of transport along the secretory pathway with diversion to the proteasome.

View Article and Find Full Text PDF

Thyroglobulin (Tg, precursor for thyroid hormone synthesis) is a large secreted glycoprotein composed of upstream regions I-II-III, followed by the approximately 570 residue cholinesterase-like (ChEL) domain. ChEL has two identified functions: 1) homodimerization, and 2) binding to I-II-III that facilitates I-II-III oxidative maturation required for intracellular protein transport. Like its homologs in the acetylcholinesterase (AChE) family, ChEL possesses two carboxyl-terminal alpha-helices.

View Article and Find Full Text PDF

Proteins of the alpha/beta-hydrolase fold family share a common structural fold, but perform a diverse set of functions. We have been studying natural mutations occurring in association with congenital disorders in the alpha/beta-hydrolase fold domain of neuroligin (NLGN), butyrylcholinesterase (BChE), acetylcholinesterase (AChE). Starting from the autism-related R451C mutation in the alpha/beta-hydrolase fold domain of NLGN3, we had previously shown that the Arg to Cys substitution is responsible for endoplasmic reticulum (ER) retention of the mutant protein and that a similar trafficking defect is observed when the mutation is inserted at the homologous positions in AChE and BChE.

View Article and Find Full Text PDF

Prostate Zn(2+) concentrations are among the highest in the body, and a marked decrease in the level of this ion is observed in prostate cancer. Extracellular Zn(2+) is known to regulate cell survival and proliferation in numerous tissues. In spite of this, a signaling role for extracellular Zn(2+) in prostate cancer has not been established.

View Article and Find Full Text PDF

Epidemiologic studies have found an inverse association between consumption of tomato products and the risk of certain types of cancers. However, the mechanisms underlying this relationship are not completely understood. One mechanism that has been suggested is induction of phase II detoxification enzymes.

View Article and Find Full Text PDF

The possible involvement of several transcription systems in the anticancer activity of carotenoids is the focus of this review. Carotenoids modulate the basic mechanisms of cell proliferation, growth factor signaling, gap junctional intercellular communication, and produce changes in the expression of many proteins participating in these processes. The changes in the expression of multiple proteins suggest that the initial effect of carotenoids involves modulation of transcription.

View Article and Find Full Text PDF