Publications by authors named "Noeske T"

Hepatotoxicity is one of the most frequently observed adverse effects resulting from exposure to a xenobiotic. For example, in pharmaceutical research and development it is one of the major reasons for drug withdrawals, clinical failures, and discontinuation of drug candidates. The development of faster and cheaper methods to assess hepatotoxicity that are both more sustainable and more informative is critically needed.

View Article and Find Full Text PDF

Machine learning is widely used in drug development to predict activity in biological assays based on chemical structure. However, the process of transitioning from one experimental setup to another for the same biological endpoint has not been extensively studied. In a retrospective study, we here explore different modeling strategies of how to combine data from the old and new assays when training conformal prediction models using data from hERG and Na assays.

View Article and Find Full Text PDF

The drug-induced accumulation of phospholipids in lysosomes of various tissues is predominantly observed in regular repeat dose studies, often after prolonged exposure, and further investigated in mechanistic studies prior to candidate nomination. The finding can cause delays in the discovery process inflicting high costs to the affected projects. This article presents an in vitro imaging-based method for early detection of phospholipidosis liability and a hybrid approach for early detection and risk mitigation of phospolipidosis utilizing the in vitro readout with in silico model prediction.

View Article and Find Full Text PDF

The bile salt export pump (BSEP) is an ABC-transporter expressed at the canalicular membrane of hepatocytes. Its physiological role is to expel bile salts into the canaliculi from where they drain into the bile duct. Inhibition of this transporter may lead to intrahepatic cholestasis.

View Article and Find Full Text PDF

When evaluating a potential drug candidate it is desirable to predict target interactions in silico prior to synthesis in order to assess, e.g., secondary pharmacology.

View Article and Find Full Text PDF

A new series of pyrazinecarboxamide DGAT1 inhibitors was designed to address the need for a candidate drug with good potency, selectivity, and physical and DMPK properties combined with a low predicted dose in man. Rational design and optimization of this series led to the discovery of compound 30 (AZD7687), which met the project objectives for potency, selectivity, in particular over ACAT1, solubility, and preclinical PK profiles. This compound showed the anticipated excellent pharmacokinetic properties in human volunteers.

View Article and Find Full Text PDF

The human bile salt export pump (BSEP) is a membrane protein expressed on the canalicular plasma membrane domain of hepatocytes, which mediates active transport of unconjugated and conjugated bile salts from liver cells into bile. BSEP activity therefore plays an important role in bile flow. In humans, genetically inherited defects in BSEP expression or activity cause cholestatic liver injury, and many drugs that cause cholestatic drug-induced liver injury (DILI) in humans have been shown to inhibit BSEP activity in vitro and in vivo.

View Article and Find Full Text PDF

Inhibition of acetyl-CoA carboxylases has the potential for modulating long chain fatty acid biosynthesis and mitochondrial fatty acid oxidation. Hybridization of weak inhibitors of ACC2 provided a novel, moderately potent but lipophilic series. Optimization led to compounds 33 and 37, which exhibit potent inhibition of human ACC2, 10-fold selectivity over inhibition of human ACC1, good physical and in vitro ADME properties and good bioavailability.

View Article and Find Full Text PDF

We report the identification of novel potent and selective metabotropic glutamate receptor 1 (mGluR1) antagonists by virtual screening and subsequent hit optimization. For ligand-based virtual screening, molecules were represented by a topological pharmacophore descriptor (CATS-2D) and clustered by a self-organizing map (SOM). The most promising compounds were tested in mGluR1 functional and binding assays.

View Article and Find Full Text PDF

A virtual screening study towards novel noncompetitive antagonists of the metabotropic glutamate receptor 1 (mGluR1) is described. Alignment-free topological pharmacophore descriptors (CATS) were used to encode the screening compounds. All virtual hits were characterized with respect to their allosteric antagonistic effect on mGluR1 in both functional and binding assays.

View Article and Find Full Text PDF