Current differentiation protocols for generating mesencephalic dopaminergic (mesDA) neurons from human pluripotent stem cells result in grafts containing only a small proportion of mesDA neurons when transplanted in vivo. In this study, we develop lineage-restricted undifferentiated stem cells (LR-USCs) from pluripotent stem cells, which enhances their potential for differentiating into caudal midbrain floor plate progenitors and mesDA neurons. Using a ventral midbrain protocol, 69% of LR-USCs become bona fide caudal midbrain floor plate progenitors, compared to only 25% of human embryonic stem cells (hESCs).
View Article and Find Full Text PDFBehavioral flexibility and timely reactions to salient stimuli are essential for survival. The subcortical thalamic-basolateral amygdala (BLA) pathway serves as a shortcut for salient stimuli ensuring rapid processing. Here, we show that BLA neuronal and thalamic axonal activity in mice mirror the defensive behavior evoked by an innate visual threat as well as an auditory learned threat.
View Article and Find Full Text PDFPain processing in young mammals is immature. Despite the central role of the medullary dorsal horn (MDH) in processing orofacial sensory information, the maturation of the neurons within the MDH has been largely overlooked. Combining in vitro electrophysiological recordings and 3D morphological analysis over the first postnatal month in rats, we investigated the age-dependent development of the neurons within the inner lamina II (IIi) of the MDH.
View Article and Find Full Text PDFAn inherent property of extinguished fear memories is that the fear may return. A recent study in mice by Li et al. provides novel insights into the mechanisms underlying the relapse of an extinguished memory through converging sensory and contextual cues from the auditory cortex (ACx) and ventral hippocampus (vHPC) to the lateral amygdala (LA).
View Article and Find Full Text PDFThe differentiation of patient-specific induced pluripotent stem cells (iPSCs) into specific neuronal subtypes has been exploited as an approach for modeling a variety of neurological disorders. However, achieving a highly pure population of neurons is challenging when using directed differentiation methods, especially for neuronal subtypes generated by complex and protracted protocols. In this study, we efficiently produced highly pure populations of regionally specified CNS neurons by using a modified NGN2-Puromycin direct conversion protocol.
View Article and Find Full Text PDFA fundamental interest in circuit analysis is to parse out the synaptic inputs underlying a behavioral experience. Toward this aim, we have devised an unbiased strategy that specifically labels the afferent inputs that are activated by a defined stimulus in an activity-dependent manner. We validated this strategy in four brain circuits receiving known sensory inputs.
View Article and Find Full Text PDFMechanical allodynia, a widespread pain symptom that still lacks effective therapy, is associated with the activation of a dorsally directed polysynaptic circuit within the spinal dorsal horn (SDH) or medullary dorsal horn (MDH), whereby tactile inputs into deep SDH/MDH can gain access to superficial SDH/MDH, eliciting pain. Inner lamina II (II) interneurons expressing the γ isoform of protein kinase C (PKCγ) are key elements for allodynia circuits, but how they operate is still unclear. Combining behavioral, electrophysiological, and morphological approaches in an adult rat model of facial inflammatory pain (complete Freund's adjuvant, CFA), we show that the mechanical allodynia observed 1 h after CFA injection is associated with the following (1) sensitization (using ERK1/2 phosphorylation as a marker) and (2) reduced dendritic arborizations and enhanced spine density in exclusively PKCγ interneurons, but (3) depolarized resting membrane potential (RMP) in all lamina II PKCγ/PKCγ interneurons.
View Article and Find Full Text PDFProtein kinase C gamma (PKCγ) interneurons, located in the superficial spinal (SDH) and medullary dorsal horns (MDH), have been shown to play a critical role in cutaneous mechanical hypersensitivity. However, a thorough characterization of their development in the MDH is lacking. Here, it is shown that the number of PKCγ-ir interneurons changes from postnatal day 3 (P3) to P60 (adult) and such developmental changes differ according to laminae.
View Article and Find Full Text PDF