Cover crops (CCs) are increasingly used in viticulture because they benefit the soil and the environment in many ways. This study investigated the extent to which the incorporation of CC residues altered organic matter (OM) and Cu dynamics in a Cu-contaminated vineyard topsoil. A 92-day incubation period was used to monitor changes over time in carbon mineralization, carbon hydrolytic enzyme activity, concentration and optical properties of dissolved organic matter (DOM), and Cu solubility after the addition (or not) of two CC residues, oat or faba bean.
View Article and Find Full Text PDFSpectrophotometric acid-base titration is a simple and powerful technique to evaluate the properties of proton binding sites of natural organic matter (NOM) at environmentally relevant concentrations. However, it is challenging to quantify the chemical charges () carried by NOM at these concentrations. Based on a previous work, which relates the variation of with the specific UV-vis differential absorbance (Δ) at a given wavelength (λ) and pH of a dissolved NOM sample, the present work proposes a method to investigate any NOM sample.
View Article and Find Full Text PDFThere is currently an intense debate about the potential for additional organic carbon storage in soil, the strategies by which it may be accomplished and what the actual benefits might be for agriculture and the climate. Controversy forms an essential part of the scientific process, but on the topic of soil carbon storage, it may confuse the agricultural community and the general public and may delay actions to fight climate change. In an attempt to shed light on this topic, the originality of this article lies in its intention to provide a balanced description of contradictory scientific opinions on soil carbon storage and to examine how the scientific community can support decision-making despite the controversy.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
April 2022
Accumulation of copper (Cu) in soils due to the application of fungicides may be toxic for organisms and hence affect winegrowing sustainability. Soil parameters such as pH and dissolved organic matter (DOM) are known to affect the availability of Cu. In this study, we investigated the contribution of chromophoric and fluorescent DOM properties to the prediction of Cu availability in 18 organic vineyard soils in the Bordeaux winegrowing area (France).
View Article and Find Full Text PDFAquifers in the Upper Colorado River Basin (UCRB) exhibit persistent uranium (U) groundwater contamination plumes originating from former ore processing operations. Previous observations at Rifle, Colorado, have shown that fine grained, sulfidic, organic-enriched sediments accumulate U in its reduced form, U(IV), which is less mobile than oxidized U(VI). These reduced sediment bodies can subsequently act as secondary sources, releasing U back to the aquifer.
View Article and Find Full Text PDFFloodplains, heavily used for water supplies, housing, agriculture, mining, and industry, are important repositories of organic carbon, nutrients, and metal contaminants. The accumulation and release of these species is often mediated by redox processes. Understanding the physicochemical, hydrological, and biogeochemical controls on the distribution and variability of sediment redox conditions is therefore critical to developing conceptual and numerical models of contaminant transport within floodplains.
View Article and Find Full Text PDFThe Rifle alluvial aquifer along the Colorado River in west central Colorado contains fine-grained, diffusion-limited sediment lenses that are substantially enriched in organic carbon and sulfides, as well as uranium, from previous milling operations. These naturally reduced zones (NRZs) coincide spatially with a persistent uranium groundwater plume. There is concern that uranium release from NRZs is contributing to plume persistence or will do so in the future.
View Article and Find Full Text PDFAdsorption of purified Aldrich humic acid (PAHA) onto α-Al(2)O(3) is studied by batch experiments at different pH, ionic strength and coverage ratios R (mg of PAHA by m(2) of mineral surface). After equilibration, samples are centrifuged and the concentration of PAHA in the supernatants is measured. The amount of adsorbed PAHA per m(2) of mineral surface is decreasing with increasing pH.
View Article and Find Full Text PDFEu(III) sorption onto α-Al(2)O(3) in the presence of purified Aldrich humic acid (PAHA) is studied by batch experiments and time-resolved laser-induced luminescence spectroscopy of Eu(III). Experiments are conducted at varying pH, at 0.1 mol/L NaClO(4), 10(-6) mol/L Eu(III), 1 g/L α-Al(2)O(3) and 28 mg/L PAHA, which assured a complete Eu(III)-PAHA complexation.
View Article and Find Full Text PDFPotentiometric titration is a common method to characterize dissolved organic matter (DOM) reactivity. Because of the sensitivity of pH electrodes, it is necessary to work with very high DOM (>1 g/L) concentrations that are unrealistic compared to those found in natural waters (0.1 to 100 mg/L).
View Article and Find Full Text PDF