Biofilm formation is most commonly combatted with antibiotics or biocides. However, proven toxicity and increasing resistance of bacteria increase the need for alternative strategies to prevent adhesion of bacteria to surfaces. Chemical modification of the surfaces by tethering of functional polymer brushes or films provides a route toward antifouling coatings.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2020
Collembola are ancient arthropods living in soil with extensive exposure to dirt, bacteria, and fungi. To protect from the harsh environmental conditions and to retain a layer of air for breathing when submerged in water, they have evolved a superhydrophobic, liquid-repelling cuticle surface. The nonfouling and self-cleaning properties of springtail cuticle make it an interesting target of biomimetic materials design.
View Article and Find Full Text PDFThe design of drug delivery systems needs to consider biocompatibility and host body recognition for an adequate actuation. In this work, mesoporous silica nanoparticles (MSNs) surfaces were successfully modified with two silane molecules to provide mixed-charge brushes (-NH/-PO) and well evaluated in terms of surface properties, low-fouling capability and cell uptake in comparison to PEGylated MSNs. The modification process consists in the simultaneous direct-grafting of hydrolysable short chain amino (aminopropyl silanetriol, APST) and phosphonate-based (trihydroxy-silyl-propyl-methyl-phosphonate, THSPMP) silane molecules able to provide a pseudo-zwitterionic nature under physiological pH conditions.
View Article and Find Full Text PDFFouling of thin tubes is a major problem, leading to various infections and associated morbidities, while cleaning is difficult or even impossible. Here, a generic method is introduced to activate and coat the inside of meter-long and at the same time thin (down to 1 mm) tubes with a super-liquid-repellent layer of nanofilaments, exhibiting even antibacterial properties. Activation is facilitated by pumping an oxidative Fenton solution through the tubes.
View Article and Find Full Text PDFOnce materials come into contact with a biological fluid containing proteins, proteins are generally-whether desired or not-attracted by the material's surface and adsorb onto it. The aim of this Review is to give an overview of the most commonly used characterization methods employed to gain a better understanding of the adsorption processes on either planar or curved surfaces. We continue to illustrate the benefit of combining different methods to different surface geometries of the material.
View Article and Find Full Text PDFPolydimethylsiloxane (PDMS) can be grafted to metal-oxide photocatalysts such as titanium oxide by simple UV irradiation in solution or melt. The PDMS graft metal oxides are still photocatalytically active. They are hydrophobic, liquid repellent, self-cleaning, prevent biofouling and are long-term stable even in UV light.
View Article and Find Full Text PDFSuper nonfouling surfaces resist protein adhesion and have a broad field of possible applications in implant technology, drug delivery, blood compatible materials, biosensors, and marine coatings. A promising route toward nonfouling surfaces involves liquid repelling architectures. The authors here show that soot-templated super-amphiphobic (SAP) surfaces prepared from fluorinated candle soot structures are super nonfouling.
View Article and Find Full Text PDFSuperliquid repellency can be achieved by nano- and microstructuring surfaces in such a way that protrusions entrap air underneath the liquid. It is still not known how the three-phase contact line advances on such structured surfaces. In contrast to a smooth surface, where the contact line can advance continuously, on a superliquid-repellent surface, the contact line has to overcome an air gap between protrusions.
View Article and Find Full Text PDFFor a liquid droplet to slide down a solid planar surface, the surface usually has to be tilted above a critical angle of approximately 10°. By contrast, droplets of nearly any liquid "slip" on lubricant-infused textured surfaces - so termed slippery surfaces - when tilted by only a few degrees. The mechanism of how the lubricant alters the static and dynamic properties of the drop remains elusive because the drop-lubricant interface is hidden.
View Article and Find Full Text PDFSuperhydrophobic surfaces are usually characterized by a high apparent contact angle of water drops in air. Here we analyze the inverse situation: Rather than focusing on water repellency in air, we measure the attractive interaction of air bubbles and superhydrophobic surfaces in water. Forces were measured between microbubbles with radii R of 40-90 μm attached to an atomic force microscope cantilever and submerged superhydrophobic surfaces.
View Article and Find Full Text PDFWe demonstrate the fabrication of superhydrophobic surfaces consisting of micropillars with hydrophobic sidewalls and hydrophilic tops, referred to as Janus micropillars. Therefore we first coat a micropillar array with a mono- or bilayer of polymeric particles, and merge the particles together to shield the top faces while hydrophobizing the walls. After removing the polymer film, the top faces of the micropillar arrays can be selectively chemically functionalised with hydrophilic groups.
View Article and Find Full Text PDF