: This research centers on the development and spectroscopic characterization of new quinazolin-4(3H)-one-isoxazole derivatives (). The aim was to investigate the regioselectivity of the 1,3-dipolar cycloaddition involving arylnitriloxides and N-propargylquinazolin-4(3H)-one, and to assess the antioxidant properties of the synthesized compounds. The synthetic approach started with the alkylation of quinazolin-4(3H)-one using propargyl bromide, followed by a 1,3-dipolar cycloaddition reaction.
View Article and Find Full Text PDFStabilization of reactive intermediates is an enabling concept in biomass fractionation and depolymerization. Deep eutectic solvents (DES) are intriguing green reaction media for biomass processing; however undesired lignin condensation is a typical drawback for most acid-based DES fractionation processes. Here we describe ternary DES systems composed of choline chloride and oxalic acid, additionally incorporating ethylene glycol (or other diols) that provide the desired 'stabilization' function for efficient lignocellulose fractionation, preserving the quality of all lignocellulose constituents.
View Article and Find Full Text PDFNew chiral heteroleptic germanium(ii) and tin(ii) metallylenes were obtained using 1-(para-tolylsulfinyl)-3-tosyl-5-tert-butyl-benzene as a non-symmetric O,C,O-chelating pincer ligand. Crystallographic analysis and DFT calculations indicate that the non-symmetric sulfinyl-sulfonyl pincer ligand acts as an O,C,O-coordinating pincer-type-ligand with predominant sulfinyl intramolecular S[double bond, length as m-dash]O coordination to germanium(ii) and tin(ii) centers.
View Article and Find Full Text PDFThe synthesis and characterization of an E2 CE2 bis-sulfonyl aryl pincer ligand and its efficiency for the stabilization of compounds containing low-valent Group 14 elements (Ge and Sn) are reported. Complexation reaction of these metallylenes with iron or tungsten complexes resulted in the modulation of the oxygen atoms of the sulfonyl groups implicated in the stabilization of the Group 14 elements, demonstrating the original adjustable character of the bis-sulfonyl O2 S-C-SO2 aryl pincer.
View Article and Find Full Text PDF