To date, crystallization studies conducted in space laboratories, which are prohibitively costly and unsuitable to most research laboratories, have shown the valuable effects of microgravity during crystal growth and morphogenesis. Herein, an easy and highly efficient method is shown to achieve space-like experimentation conditions on Earth employing custom-made microfluidic devices to fabricate 2D porous crystalline molecular frameworks. It is confirmed that experimentation under these simulated microgravity conditions has unprecedented effects on the orientation, compactness and crack-free generation of 2D porous crystalline molecular frameworks as well as in their integration and crystal morphogenesis.
View Article and Find Full Text PDFHerein, a new 2-dimensional coordination polymer based on copper (II), {Cu(L)(DMF)}, where L stands for 1,2,4,5-benzenetetracarboxylate (complex 1) is synthesized. Interestingly, we demonstrate that both solvent and sonication are relevant in the top-down fabrication of nanostructures. Water molecules are intercalated in suspended crystals of complex 1 modifying not only the coordination sphere of Cu(II) ions but also the final chemical formula and crystalline structure obtaining {[Cu(L)(HO)]·HO} (complex 2).
View Article and Find Full Text PDFLarge blue rectangular crystals of the 2D layered coordination polymer 1 have been obtained. The interest for this complex is two-fold. First, complex 1 is made of 2D layers packing along the (0-11) direction favored by the presence of lattice and coordinated water molecules.
View Article and Find Full Text PDF