Publications by authors named "Noemi Brusco"

In the complex and articulated machinery of the human genome, less than 2% of the transcriptome encodes for proteins, while at least 75% is actively transcribed into non-coding RNAs (ncRNAs). Among the non-coding transcripts, those ≥200 nucleotides long (lncRNAs) are receiving growing attention for their involvement in human diseases, particularly cancer. Genomic studies have revealed the multiplicity of processes, including neoplastic transformation and tumor progression, in which lncRNAs are involved by regulating gene expression at epigenetic, transcriptional, and post-transcriptional levels by mechanism(s) that still need to be clarified.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the relationship between endoplasmic reticulum (ER) stress and beta cell dedifferentiation, both of which contribute to impaired insulin secretion in type 2 diabetes.
  • Researchers analyzed pancreas biopsies from living donors to track changes in insulin synthesis and markers of ER stress and beta cell function.
  • Findings indicate that increased beta cell demands lead to heightened ER stress, resulting in faulty insulin processing and a decline in beta cell identity over the progression of diabetes.
View Article and Find Full Text PDF

The loss of functional β-cell mass in type 2 diabetes (T2D) is associated with molecular events that include β-cell apoptosis, dysfunction and/or dedifferentiation. MicroRNA miR-184-3p has been shown to be involved in several β-cell functions, including insulin secretion, proliferation and survival. However, the downstream targets and upstream regulators of miR-184-3p have not been fully elucidated.

View Article and Find Full Text PDF

The interaction between genetic and environmental factors determines the development of type 1 diabetes (T1D). Some viruses are capable of infecting and damaging pancreatic β-cells, whose antiviral response could be modulated by specific viral RNA receptors and sensors such as melanoma differentiation associated gene 5 (MDA5), encoded by the IFIH1 gene. MDA5 has been shown to be involved in pro-inflammatory and immunoregulatory outcomes, thus determining the response of pancreatic islets to viral infections.

View Article and Find Full Text PDF

Type 2 diabetes (T2D), a chronic metabolic disease, has attained the status of a global epidemic with steadily increasing incidence worldwide. Improved diagnosis, stratification and prognosis of T2D patients and the development of more effective treatments are needed. In this era of personalized medicine, the discovery and evaluation of innovative circulating biomarkers can be an effective tool for better stratification, prognosis and therapeutic selection/management of T2D patients.

View Article and Find Full Text PDF

In type 1 diabetes, autoimmune β-cell destruction may be favored by neoantigens harboring posttranslational modifications (PTMs) such as citrullination. We studied the recognition of native and citrullinated glucose-regulated protein (GRP)78 peptides by CD8 T cells. Citrullination modulated T-cell recognition and, to a lesser extent, HLA-A2 binding.

View Article and Find Full Text PDF

Type 2 diabetes (T2D) represents one of the major health issues of this century. Despite the availability of an increasing number of anti-hyperglycemic drugs, a significant proportion of patients are inadequately controlled, thus highlighting the need for novel biomarkers to guide treatment selection. MicroRNAs (miRNAs) are small non-coding RNAs, proposed as useful diagnostic/prognostic markers.

View Article and Find Full Text PDF

The rising prevalence of metabolic diseases related to insulin resistance (IR) have stressed the urgent need of accurate and applicable tools for early diagnosis and treatment. In the last decade, non-coding RNAs (ncRNAs) have gained growing interest because of their potential role in IR modulation. NcRNAs are variable-length transcripts which are not translated into proteins but are involved in gene expression regulation.

View Article and Find Full Text PDF

The identification and validation of circulating small non-coding RNA (sncRNA) as biomarkers for disease diagnosis, staging, and response to novel therapies is still a compelling challenge. Pre-analytical variables, such as storage temperature or blood hemolysis, and different analytical approaches affect sncRNA stability, detection, and expression, resulting in discrepancies among studies. Here, we report a systematic standardized protocol to reproducibly analyze circulating sncRNAs, employing high-throughput sncRNA sequencing and qRT-PCR validation, from 200 μL of human plasma samples.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are generated by cells of origin through complex molecular mechanisms and released into extracellular environment. Hence, the presence of EVs has been described in multiple biological fluids and in most cases their molecular cargo, which includes non-coding RNAs (ncRNA), messenger RNAs (mRNA), and proteins, has been reported to modulate distinct biological processes. EVs release and their molecular cargo have been demonstrated to be altered in multiple diseases, including autoimmune diseases.

View Article and Find Full Text PDF

Diabetes mellitus is a group of heterogeneous metabolic disorders characterized by chronic hyperglycaemia mainly due to pancreatic β cell death and/or dysfunction, caused by several types of stress such as glucotoxicity, lipotoxicity and inflammation. Different patho-physiological mechanisms driving β cell response to these stresses are tightly regulated by microRNAs (miRNAs), a class of negative regulators of gene expression, involved in pathogenic mechanisms occurring in diabetes and in its complications. In this review, we aim to shed light on the most important miRNAs regulating the maintenance and the robustness of β cell identity, as well as on those miRNAs involved in the pathogenesis of the two main forms of diabetes mellitus, i.

View Article and Find Full Text PDF

Increasing evidence demonstrated that the expression of Angiotensin I-Converting Enzyme type 2 (ACE2) is a necessary step for SARS-CoV-2 infection permissiveness. In light of the recent data highlighting an association between COVID-19 and diabetes, a detailed analysis aimed at evaluating ACE2 expression pattern distribution in human pancreas is still lacking. Here, we took advantage of INNODIA network EUnPOD biobank collection to thoroughly analyze ACE2, both at mRNA and protein level, in multiple human pancreatic tissues and using several methodologies.

View Article and Find Full Text PDF

We identified and compared secreted microRNA (miRNA) expression in aqueous humor (AH) and plasma samples among patients with: type 2 diabetes mellitus (T2D) complicated by non-proliferative diabetic retinopathy (DR) associated with diabetic macular edema (DME) (DME group: 12 patients); T2D patients without DR (D group: 8 patients); and non-diabetic patients (CTR group: 10 patients). Individual patient AH samples from five subjects in each group were profiled on TaqMan Low Density MicroRNA Array Cards. Differentially expressed miRNAs identified from profiling were then validated in single assay for all subjects.

View Article and Find Full Text PDF

Diabetes mellitus is a group of heterogeneous metabolic disorders characterized by chronic hyperglycaemia as a consequence of pancreatic β cell loss and/or dysfunction, also caused by oxidative stress. The molecular mechanisms involved inβ cell dysfunction and in response to oxidative stress are also regulated by microRNAs (miRNAs). miRNAs are a class of negative gene regulators, which modulate pathologic mechanisms occurring in diabetes and its complications.

View Article and Find Full Text PDF

Type 1 diabetes (T1D) is characterized by bone loss and altered bone remodeling, resulting into reduction of bone mineral density (BMD) and increased risk of fractures. Identification of specific biomarkers and/or causative factors of diabetic bone fragility is of fundamental importance for an early detection of such alterations and to envisage appropriate therapeutic interventions. MicroRNAs (miRNAs) are small non-coding RNAs which negatively regulate genes expression.

View Article and Find Full Text PDF

The insulin signaling pathway is composed of a large number of molecules that positively or negatively modulate insulin specific signal transduction following its binding to the cognate receptor. Given the importance of the final effects of insulin signal transduction, it is conceivable that many regulators are needed in order to tightly control the metabolic or proliferative functional outputs. MicroRNAs (miRNAs) are small non-coding RNA molecules that negatively modulate gene expression through their specific binding within the 3'UTR sequence of messenger RNA (mRNA), thus causing mRNA decoy or translational inhibition.

View Article and Find Full Text PDF

β-cell dedifferentiation has been recently suggested as an additional mechanism contributing to type-1 and to type-2 diabetes pathogenesis. Moreover, several studies demonstrated that in vitro culture of native human pancreatic islets derived from non-diabetic donors resulted in the generation of an undifferentiated cell population. Additional evidence from in vitro human β-cell lineage tracing experiments, demonstrated that dedifferentiated cells derive from β-cells, thus representing a potential in vitro model of β-cell dedifferentiation.

View Article and Find Full Text PDF