Unlabelled: Smokers have reduced levels of brain monoamine oxidase A (MAO A) leading to speculation that MAO A inhibition by tobacco smoke may underlie some of the neurophysiologic effects of smoking. Because smoking exposes peripheral organs as well as the brain to MAO A-inhibitory compounds, we determined whether smokers would also have reduced MAO A in peripheral organs.
Methods: We measured MAO A in peripheral organs in a group of 9 smokers and compared it with a group of nonsmokers studied previously.
One of the major mechanisms for terminating the actions of catecholamines and vasoactive dietary amines is oxidation by monoamine oxidase (MAO). Smokers have been shown to have reduced levels of brain MAO, leading to speculation that MAO inhibition by tobacco smoke may underlie some of the behavioral and epidemiological features of smoking. Because smoking exposes peripheral organs as well as the brain to MAO-inhibitory compounds, we questioned whether smokers would also have reduced MAO levels in peripheral organs.
View Article and Find Full Text PDFBackground: The mechanisms underlying the gender differences in alcohol drinking behavior and alcohol's effects are poorly understood and may reflect gender differences in brain neurochemistry. Alcohol decreases glucose metabolism in the human brain in a pattern that is consistent with its facilitation of GABAergic neurotransmission. We compared the regional changes in brain glucose metabolism during alcohol intoxication between female and male subjects.
View Article and Find Full Text PDFMonoamine oxidase (MAO) catalyzes the oxidative deamination of many biogenic and dietary amines. Though studies of MAO have focused mainly on its regulatory role in the brain, MAO in peripheral organs also represents a vast mechanism for detoxifying vasoactive compounds as well as for terminating the action of physiologically active amines, which can cross the blood brain barrier. Indeed, robust central and peripheral MAO activity is a major requirement in the safe use of many CNS drugs, particularly antidepressants, and thus an awareness of the MAO inhibitory potential of drugs is essential in therapeutics.
View Article and Find Full Text PDFThe cerebral mechanisms underlying excess food intake in obese subjects are poorly understood. We used PET and 2-deoxy-2[18F]fluoro-D-glucose to assess differences in regional brain metabolism between obese and lean subjects at rest. Brain metabolic images were analyzed using statistical parameter maps.
View Article and Find Full Text PDF