Publications by authors named "Noelle Ochotny"

We describe a simple fabrication technique - targeted towards non-specialists - that allows for the production of leak-proof polydimethylsiloxane (PDMS) microfluidic devices that are compatible with live-cell microscopy. Thin PDMS base membranes were spin-coated onto a glass-bottom cell culture dish and then partially cured via microwave irradiation. PDMS chips were generated using a replica molding technique, and then sealed to the PDMS base membrane by microwave irradiation.

View Article and Find Full Text PDF

Vacuolar-type H(+)-ATPases (V-ATPases) are located in lysosomes and at the ruffled border in osteoclasts. We showed previously that the R740S mutation is dominant negative for V-ATPase activity, uncouples proton transport from ATP hydrolysis and causes osteopetrosis in heterozygous mice (+/R740S). Here we show mice homozygous for R740S (R740S/R740S) have more severe osteopetrosis and die by postnatal day 14.

View Article and Find Full Text PDF

Vacuolar H(+) -ATPase (V-ATPase), a multisubunit enzyme located at the ruffled border and in lysosomes of osteoclasts, is necessary for bone resorption. We previously showed that heterozygous mice with an R740S mutation in the a3 subunit of V-ATPase (+/R740S) have mild osteopetrosis resulting from an ∼90% reduction in proton translocation across osteoclast membranes. Here we show that lysosomal pH is also higher in +/R740S compared with wild-type (+/+) osteoclasts.

View Article and Find Full Text PDF

A mouse founder with high bone mineral density and an osteopetrotic phenotype was identified in an N-ethyl-N-nitrosourea (ENU) screen. It was found to carry a dominant missense mutation in the Tcirg1 gene that encodes the a3 subunit of the vacuolar type H(+)-ATPase (V-ATPase), resulting in replacement of a highly conserved amino acid (R740S). The +/R740S mice have normal appearance, size, and weight but exhibit high bone density.

View Article and Find Full Text PDF

Vacuolar H(+)-ATPases (V-ATPases) are large electrogenic proton pumps composed of numerous subunits that play vital housekeeping roles in the acidification of compartments of the endocytic pathway. Additionally, V-ATPases play specialized roles in certain cell types, a capacity that is linked to cell type selective expression of isoforms of some of the subunits. We detected low levels of the a3 isoform of the a-subunit in mouse brain extracts.

View Article and Find Full Text PDF

V-ATPases are multimeric proton pumps. The 100-kDa "a" subunit is encoded by four isoforms (a1-a4) in mammals and two (Vph1p and Stv1p) in yeast. a3 is enriched in osteoclasts and is essential for bone resorption, whereas a4 is expressed in the distal nephron and acidifies urine.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: