Metastasis is the main cause of deaths related to breast cancer. This is particular the case for triple negative breast cancer. No targeted therapies are reported as efficient until now.
View Article and Find Full Text PDFIn the context of breast cancer metastasis study, we have shown in an in vitro model of cell migration that IGDQ-exposing (IsoLeu-Gly-Asp-Glutamine type I Fibronectin motif) monolayers (SAMs) on gold sustain the adhesion of breast cancer MDA-MB-231 cells by triggering Focal Adhesion Kinase and integrin activation. Such tunable scaffolds are used to mimic the tumor extracellular environment, inducing and controlling cell migration. The observed migratory behavior induced by the IGDQ-bearing peptide gradient along the surface allows to separate cell subpopulations with a "stationary" or "migratory" phenotype.
View Article and Find Full Text PDFLike nanomaterials, bacteria have been unknowingly used for centuries. They hold significant economic potential for fuel and medicinal compound production. Their full exploitation, however, is impeded by low biological activity and stability in industrial reactors.
View Article and Find Full Text PDFTumor-associated macrophages (TAMs) represent potential targets for anticancer treatments as these cells play critical roles in tumor progression and frequently antagonize the response to treatments. TAMs are usually associated to an M2-like phenotype, characterized by anti-inflammatory and protumoral properties. This phenotype contrasts with the M1-like macrophages, which exhibits proinflammatory, phagocytic, and antitumoral functions.
View Article and Find Full Text PDFEndoplasmic reticulum (ER) and mitochondria are not discrete intracellular organelles but establish close physical and functional interactions involved in several biological processes including mitochondrial bioenergetics, calcium homeostasis, lipid synthesis, and the regulation of apoptotic cell death pathways. As many cell types might face a transient and sublethal ER stress during their lifetime, it is thus likely that the adaptive UPR response might affect the mitochondrial population. The aim of this work was to study the putative effects of a non-lethal and transient endoplasmic reticulum stress on the mitochondrial population in HepG2 cells.
View Article and Find Full Text PDFAtheromatous plaques contain heavily lipid-loaded macrophages that die, hence generating the necrotic core of these plaques. Since plaque instability and rupture is often correlated with a large necrotic core, it is important to understand the mechanisms underlying foam cell death. Furthermore, macrophages within the plaque are associated with hypoxic areas but little is known about the effect of low oxygen partial pressure on macrophage death.
View Article and Find Full Text PDFWe show that mitochondrial DNA (mtDNA)-depleted 143B cells are hypersensitive to staurosporine-induced cell death as evidenced by a more pronounced DNA fragmentation, a stronger activation of caspase-3, an enhanced poly(ADP-ribose) polymerase-1 (PARP-1) cleavage, and a more dramatic cytosolic release of cytochrome c. We also show that B-cell CLL/lymphoma-2 (Bcl-2), B-cell lymphoma extra large (Bcl-X(L)), and myeloid cell leukemia-1 (Mcl-1) are constitutively less abundant in mtDNA-depleted cells, that the inhibition of Bcl-2 and Bcl-X(L) can sensitize the parental cell line to staurosporine-induced apoptosis, and that overexpression of Bcl-2 or Bcl-X(L) can prevent the activation of caspase-3 in ρ(0)143B cells treated with staurosporine. Moreover, the inactivation of cathepsin B with CA074-Me significantly reduced cytochrome c release, caspase-3 activation, PARP-1 cleavage, and DNA fragmentation in mtDNA-depleted cells, whereas the pan-caspase inhibitor failed to completely prevent PARP-1 cleavage and DNA fragmentation in these cells, suggesting that caspase-independent mechanisms are responsible for cell death even if caspases are activated.
View Article and Find Full Text PDFBackground: Hypoxia is a hallmark of solid tumors and is associated with metastases, therapeutic resistance and poor patient survival.
Results: In this study, we showed that hypoxia protected MDA-MB-231 breast cancer cells against paclitaxel- but not epirubicin-induced apoptosis. The possible implication of HIF-1 and AP-1 in the hypoxia-induced anti-apoptotic pathway was investigated by the use of specific siRNA.
Background: Repeated exposures to UVB of human keratinocytes lacking functional p16(INK-4a) and able to differentiate induce an alternative state of differentiation rather than stress-induced premature senescence.
Methodology/principal Findings: A 2D-DIGE proteomic profiling of this alternative state of differentiation was performed herein at various times after the exposures to UVB. Sixty-nine differentially abundant protein species were identified by mass spectrometry, many of which are involved in keratinocyte differentiation and survival.
Tumor hypoxia is one of the features of tumor microenvironment that contributes to chemoresistance in particular by cellular adaptations that modulate the apoptotic process. However, the mechanisms involved in this resistance still need deeper understanding. In this study, we investigated the involvement of four transcription factors, c-Myc, nuclear factor kappaB (NF-kappaB), p53, and c-jun/activator protein 1 (AP-1) in the hypoxia-induced resistance to etoposide in HepG2 cells.
View Article and Find Full Text PDFSkin cancers and extrinsic aging are delayed consequences of cumulative UV radiation insults. Exposure of human keratinocytes to UVB has been previously shown to trigger premature senescence. In order to explore the involvement of the cyclin-dependent kinase inhibitor p16(INK-4a) in UVB-induced premature senescence, we developed an original model of repeated sublethal exposures of human keratinocytes deficient in p16(INK-4a).
View Article and Find Full Text PDFThe presence of hypoxia in tumor and its role in promoting angiogenesis are well-established. Recently, in addition to chronic hypoxia, cycling or intermittent hypoxia has also been demonstrated. However, its role in inducing new blood vessel formation is less clear.
View Article and Find Full Text PDFTreatment of IMR-90 human diploid fibroblasts with a sublethal concentration of H(2)O(2) induces premature senescence. We investigated the protein abundance, subcellular localization and involvement of caveolin 1 in premature senescence. Caveolin 1 is a scaffolding protein able to concentrate and organize signaling molecules within the caveolae membrane domains.
View Article and Find Full Text PDFHuman diploid fibroblasts undergo premature senescence after treatment with sublethal concentration of H(2)O(2). We report the first proteomic study of microsomal proteins in the context of H(2)O(2)-induced premature senescence by using 2D-DIGE approach. Twelve different proteins with altered abundance at day 3 after treatment with H(2)O(2) were identified.
View Article and Find Full Text PDFBackground: It is more and more recognized that hypoxia plays a role in the resistance of cancer cells to chemotherapy. However, the mechanisms underlying this resistance still need deeper understanding. The aim of this study was to investigate the effect of hypoxia on this process since hypoxia is one of the hallmarks of tumor environment.
View Article and Find Full Text PDFAcute repeated exposures to subcytotoxic concentrations of tert-butylhydroperoxide and ethanol trigger premature senescence of human diploid fibroblasts. In the present work we found an increased mRNA and protein level of interleukin-11 and heme oxygenase-1 in premature senescence of WI-38 human diploid foetal lung fibroblasts induced by both tert-butylhydroperoxide and ethanol. We tested whether interleukin-11 and heme oxygenase-1 could protect against tert-butylhydroperoxide- or ethanol-induced premature senescence when stable overexpression was established using a retroviral vector-based transduction.
View Article and Find Full Text PDFHIF-1 (hypoxia-inducible factor-1) is the main transcription factor involved in the adaptation of cells to hypoxia. In addition to regulation of HIF-1alpha protein level, HIF-1 activity is also enhanced by several pathways involving asparagine hydroxylation and phosphorylation. Here, we investigated the relationship between casein kinase 2 (CK2), p53 and HIF-1.
View Article and Find Full Text PDFPremature senescence of human diploid fibroblasts (HDFs) can be induced by exposures to a variety of oxidative stress and DNA damaging agents. In this study we developed a robust model of UVB-induced premature senescence of skin HDFs. After a series of 10 subcytotoxic (non-proapoptotic) exposures to UVB at 250 mJ/cm2, the so-called biomarkers of senescence were markedly expressed: growth arrest, senescence-associated beta-galactosidase activity, senescence-associated gene overexpression, deletion in mitochondrial DNA.
View Article and Find Full Text PDFHypoxic environment in solid tumor is known to favor cell survival and to initiate the formation of new capillaries. In this work, we identified by 2D gel analysis 94-kDa glucose-regulated protein (GRP94) as being upregulated in human endothelial cells in response to hypoxia. Three putative hypoxia responsive elements (HRE) were found in the GRP94 promoter.
View Article and Find Full Text PDFIncreased levels of Mcl-1 (myeloid cell factor-1) have been reported in several cancers, suggesting an important role played by Mcl-1 in cancer cell survival. Mcl-1 is an anti-apoptotic protein shown to delay or block apoptosis. In this work, using semiquantitative immunofluorescence, real-time PCR, and RNase protection assay, an increase in Mcl-1 expression was detected in hepatoma HepG2 cells incubated under hypoxia or in the presence of cobalt chloride.
View Article and Find Full Text PDF