Publications by authors named "Noelle Comolli"

Biodegradable polymers hold great therapeutic value, especially through the addition of additives for controlled drug release. Nanocellulose has shown promise in drug delivery, yet usually requires chemical crosslinking with harsh acids and solvents. Nanocellulose fibrils (NFCs) and 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO)-mediated oxidized nanocellulose fibrils (TNFCs) with poly (vinyl alcohol) (PVA) could be aqueously formulated to control the release of model drug acetaminophen over 144 hours.

View Article and Find Full Text PDF

Since donated red blood cells must be constantly refrigerated, they are often unavailable in remote areas and battlefields. The goal of this study was to synthesize a highly stable blood substitute that does not require refrigeration. Specifically, the extracellular haemoglobin (a.

View Article and Find Full Text PDF

Polymeric microparticles with covalently attached biotin are proposed as versatile targeting vehicles for drug delivery. The proposed microparticles made of 85/15 poly (lactic-co-glycolic acid) (PLGA) will have biotin available on the outside of the particle for the further attachment with an avidin group. Taking advantage of biotin's high affinity for avidin, and avidin's well-known chemistry, the particle has the potential to be easily coated with a variety of targeting moieties.

View Article and Find Full Text PDF

Spinal cord injury (SCI) triggers a large inflammatory response that results in exacerbated tissue damage. Locally delivering anti-inflammatory drugs could mitigate this secondary wave of degeneration. The mitogen-activated protein kinase family members p38 and c-Jun N-terminal kinase (JNK) play important roles in the inflammatory response and cell death.

View Article and Find Full Text PDF

Nervous tissue engineering in combination with other therapeutic strategies is an emerging trend for the treatment of different CNS disorders and injuries. We propose to use poly(N-isopropylacrylamide)-co-poly(ethylene glycol) (PNIPAAm-PEG) as a minimally invasive, injectable scaffold platform for the repair of spinal cord injury (SCI). The scaffold allows cell attachment, and provides mechanical support and a sustained release of neurotrophins.

View Article and Find Full Text PDF

Several temperature-sensitive folding (tsf) mutants of the tailspike protein from bacteriophage P22 have been found to fold with lower efficiency than the wild-type sequence, even at lowered temperatures. Previous refolding studies initiated from the unfolded monomer have indicated that the tsf mutations decrease the rate of structured monomer formation. We demonstrate that pressure treatment of the tailspike aggregates provides a useful tool to explore the effects of tsf mutants on the assembly pathway of the P22 tailspike trimer.

View Article and Find Full Text PDF