The objective of this study was to investigate the properties of BioGlass, with and without doping with europium and silver, with a specific focus on its potential application in thermoluminescent (TL) and optically stimulated luminescent (OSL) dosimetry. The structural and optical characteristics of the samples were also analyzed using techniques such as X-ray diffraction (XRD), optical absorption (OA), and fluorescence spectroscopy (FL). An XRD analysis confirmed the amorphous phase of the BioGlass.
View Article and Find Full Text PDFDoping glass with semiconductors, particularly with nanostructured semiconductors, has attracted attention due to the large optical absorption cross-sections of the latter. Based on this property, Ni[Formula: see text] (5 wt%) doped phosphate glass and Zn[Formula: see text]Ni[Formula: see text]Te (x = 0.5, 1.
View Article and Find Full Text PDFLithium-boron-aluminum (LBA) glasses doped with and fluorides were produced. From the absorption spectra, their Judd-Ofelt intensity parameters, , and spectroscopic quality factors were calculated. Exploiting their near infrared temperature dependent luminescence, we investigated their potential for optical thermometry based on the luminescence intensity ratio (LIR) methodology.
View Article and Find Full Text PDFMicrogrooved surfaces are recognized as an important strategy of tissue engineering to promote the alignment of bone cells. In this work, we have investigated the mechanical and morphological aspects of osteoblasts cells after interaction with different micro-structured polymeric surfaces. Femtosecond laser writing technique was used for the construction of circular and parallel microgrooved patterns in biocompatible polymeric surfaces based on pentaerythritol triacrylate.
View Article and Find Full Text PDFWounds treated with TiO2 nanoparticles (TiO2-NPs) show an improvement in healing time. However, little is known about the parameters that can contribute to this result. On the other hand, the treatment of wounds with polyphenols is widely known.
View Article and Find Full Text PDFNanomedicine
June 2022
The biological applicability of nanomaterials has been limited due to cytotoxicity. Studies have described the effects of nanomaterials on different tissues and cell types, but their actions on immune cells are less elucidated. This study describes unprecedented in vitro and in vivo antioxidant activities of cadmium selenide magic-sized quantum dots (CdSe MSQDs) with implications on rheumatoid arthritis.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
May 2022
CdSe magic-sized quantum dots (MSQDs) have been widely used as fluorescent probes in biological systems due to their excellent optical properties with a broader fluorescence spectrum and stable luminescence in biological media. However, they can be cytotoxic and alter the redox balance depending on the amounts of Cd adsorbed on their surface. Thus, the present study aimed to evaluate whether increases in selenium concentration in the synthesis of CdSe-MSQDs decrease the oxidative stress caused by Cd -based quantum dots.
View Article and Find Full Text PDFMicromachines (Basel)
June 2021
(1) Background: Nanocrystals (NCs)-based electrochemical sensors have been proposed for biomarkers detection, although immunosensors using ZnO NCs decorated with copper are still scarce. (2) Methods: Electrochemical immunodetection of human salivary alpha-amylase (HSA) used ZnO, CuO, and ZnO:xCu (x = 0.1, 0.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
April 2021
C-type lectin-like proteins found in snake venom, known as snaclecs, have important effects on hemostasis through targeting membrane receptors, coagulation factors and other hemostatic proteins. Here, we present the isolation and functional characterization of a snaclec isolated from Bothrops alternatus venom, designated as Baltetin. We purified the protein in three chromatographic steps (anion-exchange, affinity and reversed-phase chromatography).
View Article and Find Full Text PDFGlyphosate detection and quantification is still a challenge. After an extensive review of the literature, we observed that Fourier transform infrared spectroscopy (FTIR) had practically not yet been used for detection or quantification. The interaction between zinc oxide (ZnO), silver oxide (AgO), and Ag-doped ZnO nanocrystals (NCs), as well as that between nanocomposite (Ag-doped ZnO/AgO) and glyphosate was analyzed with FTIR to determine whether nanomaterials could be used as signal enhancers for glyphosates.
View Article and Find Full Text PDFRestor Dent Endod
November 2020
Objectives: This study aimed to synthesize nanocrystals (NCs) of zinc oxide (ZnO) and calcium ion (Ca)-doped ZnO with different percentages of calcium oxide (CaO), to evaluate cytotoxicity and to assess the effects of the most promising NCs on cytotoxicity depending on lipopolysaccharide (LPS) stimulation.
Materials And Methods: Nanomaterials were synthesized (ZnO and ZnO:xCa, x = 0.7; 1.
Iran Endod J
January 2020
Introduction: The aim of this study was to synthesize and characterize calcium hydroxide (CH) nanoparticles [CH-NP] and compare the cytotoxicity of these materials with that of mineral trioxide aggregate (White MTA) in human dental pulp mesenchymal cells (hDPMCs) stimulated by lipopolysaccharide (LPS).
Methods And Materials: The CH-NP were synthesized by the co-precipitation method, and the physical properties were investigated through X-ray diffraction, scanning electron microscopy (SEM) and energy dispersive x-ray spectrometry (EDS). LPS-stimulated hDPMCs were placed in contact with different dilutions of culture media previously exposed to CH-NP and white MTA for 24 h.
Materials (Basel)
September 2020
Titanium dioxide (TiO) is manufactured worldwide as crystalline and amorphous forms for multiple applications, including tissue engineering, but our study proposes analyzing the impact of crystalline phases of TiO on Mesenchymal Stem Cells (MSCs). Several studies have already described the regenerative potential of MSCs and TiO has been used for bone regeneration. In this study, polydispersity index and sizes of TiO nanocrystals (NCs) were determined.
View Article and Find Full Text PDFVisceral leishmaniasis is a reemerging neglected tropical disease with limitations for its diagnosis, including low concentration of antibodies in the serum of asymptomatic patients and cross-reactions. In this context, this work proposes an electrochemical immunosensor for the diagnosis of visceral leishmaniasis in a more sensitive way that is capable of avoiding cross-reaction with Chagas disease (CD). Crude antigens tested in the enzyme-linked immunosorbent assay (ELISA) were methodologically standardized to best engage to the sensor.
View Article and Find Full Text PDFFront Microbiol
February 2019
spp. is an important foodborne agent of salmonellosis, whose sources in humans often include products of avian origin. The control of this bacterium is difficult especially when spp.
View Article and Find Full Text PDFObjectives: To evaluate the effect of in vivo radiotherapy on the chemical properties of human dentine by Fourier-transform infrared spectroscopy (FTIR) and Raman analysis.
Materials And Methods: Chemical composition was evaluated comparing control and irradiated group (n = 8). Irradiated teeth were obtained from radiotherapy patients subjected to fractionated X-ray radiation of 1.
Phospholipases A represent a family of enzymes with important application in medicine. However, direct tracking is difficult due to the absence of a stable, effective and specific marker for these enzymes. Magic-sized quantum dots (MSQDs) are inorganic semiconducting nanocrystals with unique physical properties.
View Article and Find Full Text PDFFood Chem Toxicol
February 2018
Nanoparticles have been widely used in several sectors and their long-term effect on the body and environment remains unknown. To evaluate the mutagenic, recombinogenic and carcinogenic potential of 11 nm titanium dioxide nanocrystals (TiO2 NCs), the Somatic Mutation and Recombination Test (SMART) and the Test for Detection of Epithelial Tumors Clones (Warts-Wts) were used, both in Drosophila melanogaster. Third-instar larvae (72 + 4 h), obtained in both tests, were treated with different concentrations of TiO2 NCs ranging from 6.
View Article and Find Full Text PDFThis work reports the purification and functional characterization of BmooPAi, a platelet-aggregation-inhibiting factor from snake venom. The toxin was purified by a combination of three chromatographic steps (ion-exchange on DEAE-Sephacel, molecular exclusion on Sephadex G-75, and affinity chromatography on HiTrap™ Heparin HP). BmooPAi was found to be a single-chain protein with an apparent molecular mass of 32 kDa on 14% SDS-PAGE, under reducing conditions.
View Article and Find Full Text PDFJ Venom Anim Toxins Incl Trop Dis
July 2017
Background: Snake venoms are a complex mixture of proteins, organic and inorganic compounds. Some of these proteins, enzymatic or non-enzymatic ones, are able to interact with platelet receptors, causing hemostatic disorders. The possible therapeutic potential of toxins with antiplatelet properties may arouse interest in the pharmacological areas.
View Article and Find Full Text PDFIron-doped bismuth sulphide (BiFeS₃) nanocrystals have been successfully synthesized in a glass matrix using the fusion method. Transmission electron microscopy images and energy dispersive spectroscopy data clearly show that nanocrystals are formed with an average diameter of 7-9 nm, depending on the thermic treatment time, and contain Fe in their chemical composition. Magnetic force microscopy measurements show magnetic phase contrast patterns, providing further evidence of Fe incorporation in the nanocrystal structure.
View Article and Find Full Text PDFWe study the effect of Co co-doping on the optical properties of Mn-doped ZnTe nanocrystals (NCs) embedded in a glass matrix. Optical absorption (OA) and crystal field theory strongly indicated the substitutional incorporation of Co ions into these semiconducting NCs as well as the characteristic transitions of these ions in the visible and near infrared spectral region. Transmission electron microscopy (TEM) images revealed an invariant NC lattice parameter with the incorporation of Mn and Co ions.
View Article and Find Full Text PDFFood Chem Toxicol
October 2016
Titanium dioxide nanocrystals (TiO2 NCs) crystalline structures include anatase, rutile and brookite. This study evaluated the genotoxic effects of 3.4 and 6.
View Article and Find Full Text PDFSemimagnetic Pb1-xCoxSe nanocrystals were synthesized by a fusion protocol in a glass matrix and characterized by optical absorption (OA), transmission electron microscopy (TEM), and photoluminescence (PL) techniques. OA spectra and TEM images strongly indicated the formation of Pb1-xCoxSe magnetic phases in the glass system and the quantum dot size was manipulated by tuning the annealing time. The OA spectra together with crystal field theory indicate that Co(2+) is located in the tetrahedral site (Td) and the PL of the Pb1-xCoxSe nanocrystals presents characteristic recombination in the visible (∼700 nm) and near-IR (1300-1600 nm) electromagnetic spectral range.
View Article and Find Full Text PDFCadmium selenide (CdSe) magic-sized quantum dots (MSQDs) are semiconductor nanocrystals with stable luminescence that are feasible for biomedical applications, especially for in vivo and in vitro imaging of tumor cells. In this work, we investigated the specific interaction of CdSe MSQDs with tumorigenic and non-tumorigenic cells using Langmuir monolayers and Langmuir-Blodgett (LB) films of lipids as membrane models for diagnosis of cancerous cells. Surface pressure-area isotherms and polarization modulation reflection-absorption spectroscopy (PM-IRRAS) showed an intrinsic interaction between the quantum dots, inserted in the aqueous subphase, and Langmuir monolayers constituted either of selected lipids or of tumorigenic and non-tumorigenic cell extracts.
View Article and Find Full Text PDF