Aims: The need for small caliber vessels to treat cardiovascular diseases has grown. However, synthetic polymers perform poorly in small-diameter applications. Chitosan hydrogels can provide a novel biological scaffold for vascular engineering.
View Article and Find Full Text PDFDystonia is characterized by sustained or intermittent muscle contractions causing abnormal, often repetitive movements, postures, or both that are typically patterned, twisting, and sometimes tremulous. It is often initiated or worsened by voluntary action and associated with overflow muscle activation. In this article we report a case of severe oromandibular dystonia, which is a specific form of dystonia characterized by involuntary, action-induced tonic or clonic spasms of the masticatory, lingual, and pharyngeal musculature.
View Article and Find Full Text PDFTissue engineering of large organs is currently limited by the lack of potent vascularization . Tissue-engineered bone grafts can be prevascularized using endothelial cells (ECs). The microvascular network architecture could be controlled by printing ECs following a specific pattern.
View Article and Find Full Text PDFA hydrogel was prepared from polysaccharides (pullulan/dextran/fucoidan) and evaluated as a novel biomaterial for Endothelial Progenitor Cell (EPC) culture. Using a cross-linking process with sodium trimetaphosphate in aqueous solution, homogeneous, transparent and easy to handle gels were obtained with a water content higher than 90%. Circular scaffolds (6 mm diameter and 2 mm thickness discs) were used for cell culture.
View Article and Find Full Text PDF