Publications by authors named "Noelia Purroy"

Unlike many other hematologic malignancies, Richter syndrome (RS), an aggressive B cell lymphoma originating from indolent chronic lymphocytic leukemia, is responsive to PD-1 blockade. To discover the determinants of response, we analyze single-cell transcriptome data generated from 17 bone marrow samples longitudinally collected from 6 patients with RS. Response is associated with intermediate exhausted CD8 effector/effector memory T cells marked by high expression of the transcription factor ZNF683, determined to be evolving from stem-like memory cells and divergent from terminally exhausted cells.

View Article and Find Full Text PDF

Richter syndrome (RS) arising from chronic lymphocytic leukemia (CLL) exemplifies an aggressive malignancy that develops from an indolent neoplasm. To decipher the genetics underlying this transformation, we computationally deconvoluted admixtures of CLL and RS cells from 52 patients with RS, evaluating paired CLL-RS whole-exome sequencing data. We discovered RS-specific somatic driver mutations (including IRF2BP2, SRSF1, B2M, DNMT3A and CCND3), recurrent copy-number alterations beyond del(9p21)(CDKN2A/B), whole-genome duplication and chromothripsis, which were confirmed in 45 independent RS cases and in an external set of RS whole genomes.

View Article and Find Full Text PDF

Combining single-cell cytometry datasets increases the analytical flexibility and the statistical power of data analyses. However, in many cases the full potential of co-analyses is not reached due to technical variance between data from different experimental batches. Here, we present cyCombine, a method to robustly integrate cytometry data from different batches, experiments, or even different experimental techniques, such as CITE-seq, flow cytometry, and mass cytometry.

View Article and Find Full Text PDF

Most human cancers converge to a deregulated methylome with reduced global levels and elevated methylation at select CpG islands. To investigate the emergence and dynamics of the cancer methylome, we characterized genome-wide DNA methylation in pre-neoplastic monoclonal B cell lymphocytosis (MBL) and chronic lymphocytic leukemia (CLL), including serial samples collected across disease course. We detected the aberrant tumor-associated methylation landscape at CLL diagnosis and found no significantly differentially methylated regions in the high-count MBL-to-CLL transition.

View Article and Find Full Text PDF

Background: Patients diagnosed with primary central nervous system lymphoma (PCNSL) often face dismal outcomes due to the limited availability of therapeutic options. PCNSL cells frequently have deregulated B-cell receptor (BCR) signaling, but clinical responses to its inhibition using ibrutinib have been brief. In this regard, blocking nuclear export by using selinexor, which covalently binds to XPO1, can also inhibit BCR signaling.

View Article and Find Full Text PDF

Chronic lymphocytic leukemia (CLL) cells are highly dependent on microenvironment, being the BCR pathway one key player in this crosstalk. Among proteins participating, ZAP-70 enhances response to microenvironmental stimuli. MicroRNA-21 (miR-21) is overexpressed in diverse neoplasias including CLL, where it has been associated to refractoriness to fludarabine and to shorter time to progression and survival.

View Article and Find Full Text PDF

Cumulative studies on the dissection of changes in driver genetic lesions in cancer across the course of the disease have provided powerful insights into the adaptive mechanisms of tumors in response to the selective pressures of therapy and environmental changes. In particular, the advent of next-generation-sequencing (NGS)-based technologies and its implementation for the large-scale comprehensive analyses of cancers have greatly advanced our understanding of cancer as a complex dynamic system wherein genetically distinct subclones interact and compete during tumor evolution. Aside from genetic evolution arising from interactions intrinsic to the cell subpopulations within tumors, it is increasingly appreciated that reciprocal interactions between the tumor cell and cellular constituents of the microenvironment further exert selective pressures on specific clones that can impact the balance between tumor immunity and immunologic evasion and escape.

View Article and Find Full Text PDF

Proliferation and survival of chronic lymphocytic leukemia (CLL) cells depend on microenvironmental signals coming from lymphoid organs. One of the key players involved in the crosstalk between CLL cells and the microenvironment is the B-cell receptor (BCR). Syk protein, a tyrosine kinase essential for BCR signaling, is therefore a rational candidate for targeted therapy in CLL.

View Article and Find Full Text PDF

Chronic lymphocytic leukemia (CLL) cells residing in the bone marrow (BM) and in secondary lymphoid tissues receive survival and proliferative signals from the microenvironment, resulting in persistence of residual disease after treatment. In this study, we characterized primary CLL cells cultured with BM stromal cells, CD40 ligand and CpG ODN to partially mimic the microenvironment in the proliferative centers. This co-culture system induced proliferation and chemoresistance in primary CLL cells.

View Article and Find Full Text PDF

This prospective multi-institutional phase II study was designed to assess the efficacy and safety of dose-adjusted EPOCH (etoposide, prednisone, vincristine, cyclophosphamide and doxorubicin) plus rituximab (DA-EPOCH-R) in untreated patients with poor prognosis large B-cell lymphomas. Eighty-one patients diagnosed with diffuse large B-cell lymphoma (DLBCL, n = 68), primary mediastinal DLBCL (n = 6) and follicular lymphoma Grade 3b (n = 7), with an age-adjusted International Prognostic Index >1, were eligible for analysis. Median age was 60 years (range: 21-77).

View Article and Find Full Text PDF

ZAP-70 in chronic lymphocytic leukemia (CLL) is associated with enhanced response to microenvironmental stimuli. We analyzed the functional consequences of ZAP-70 ectopic expression in malignant B-cells in a xenograft mouse model of disseminated B-cell leukemia. Mice injected with B-cells expressing ZAP-70 showed a prominently higher infiltration of the bone marrow.

View Article and Find Full Text PDF

ZAP-70 in chronic lymphocytic leukemia (CLL) has been associated with enhanced B-cell receptor (BCR) signaling, survival, and migration. We investigated whether ZAP-70 can directly govern migration and the underlying mechanisms. In the ZAP-70 stably transfected Ramos cell line, IgM stimulation, but no IgD, enhanced phosphorylation of ERK1/2, Akt and Syk, and delayed IgM and CD79b internalization.

View Article and Find Full Text PDF