Publications by authors named "Noelia Pueyo Bellafont"

We use a total energy difference approach to explore the ability of various density functional theory based methods in accounting for the differential effect of static electron correlation on the C(1s) and O(1s) core level binding energies (BEs) of the CO molecule. In particular, we focus on the magnitude of the errors of the computed C(1s) and O(1s) BEs and on their relative difference as compared to experiment and to previous results from explicitly correlated wave functions. Results show that the different exchange-correlation functionals studied here behave rather erratically and a considerable number of them lead to large errors in the BEs and/or the BE shifts.

View Article and Find Full Text PDF

Here, we assess the accuracy of various approaches implemented in Vienna ab initio simulation package code to estimate core-level binding energy shifts (ΔBEs) using a projector augmented wave method to treat core electrons. The performance of the Perdew-Burke-Ernzerhof (PBE) and the Tao-Perdew-Staroverov-Scuseria (TPSS) exchange-correlation density functionals is examined on a dataset of 68 molecules containing B→F atoms in diverse chemical environments, accounting for 185 different 1s core level binding energy shifts, for which both experimental gas-phase X-ray photoemission (XPS) data and accurate all electron ΔBEs are available. Four procedures to calculate core-level shifts are investigated.

View Article and Find Full Text PDF

Here we explored the performance of Hartree-Fock (HF), Perdew-Burke-Ernzerhof (PBE), and Tao-Perdew-Staroverov-Scuseria (TPSS) functionals in predicting core level 1s binding energies (BEs) and BE shifts (ΔBEs) for a large set of 68 molecules containing a wide variety of functional groups for main group elements B → F and considering up to 185 core levels. A statistical analysis comparing with X-ray photoelectron spectroscopy (XPS) experiments shows that BEs estimations are very accurate, TPSS exhibiting the best performance. Considering ΔBEs, the three methods yield very similar and excellent results, with mean absolute deviations of ∼0.

View Article and Find Full Text PDF

A systematic study of the N(1s) core level binding energies (BE's) in a broad series of molecules is presented employing Hartree-Fock (HF) and the B3LYP, PBE0, and LC-BPBE density functional theory (DFT) based methods with a near HF basis set. The results show that all these methods give reasonably accurate BE's with B3LYP being slightly better than HF but with both PBE0 and LCBPBE being poorer than HF. A rigorous and general decomposition of core level binding energy values into initial and final state contributions to the BE's is proposed that can be used within either HF or DFT methods.

View Article and Find Full Text PDF

Both initial state effects, to a good approximation the electrostatic potential at the nucleus, and final state effects, due to the response of the electrons to the presence of the core-hole, contribute to core-level binding energies, BE's. For Hartree-Fock, HF, wavefunctions, Koopmans' theorem, KT, which states that the initial state BE = -ε ιs rigorous. However, the KT relationship is commonly used for Kohn-Sham, KS, ε's.

View Article and Find Full Text PDF