This research raises the potential use of coordination polymers as new useful materials in two essential research fields, allowing the obtaining of a new multiartificial enzyme with the capacity to inhibit the growth of bacteria resistance. The fine selection of the ligands allows the design of a new 2D coordination polymer (CP), with the formula [Cu(IBA)(OH)]·6nHO, by the combination of Cu (II) as the metal center with a pseudoamino acid (HIBA = isophthaloyl bis -alanine). Quantitative total X-ray fluorescence (TXRF) analyses show that the obtained CP can gradually release Cu (II) ions.
View Article and Find Full Text PDFThis work contributes to enlightening the opportunities of the anisotropic scheme of non-covalent interactions present in supramolecular materials. It provides a top-down approach based on their selective disruption that herein has been employed to process a conventional microcrystalline material to a nanofibrillar porous material. The developed bulk microcrystalline material contains uracil-1-propionic acid (UPrOH) nucleobase as a molecular recognition capable building block.
View Article and Find Full Text PDFThis perspective article shows new advances in the synthesis of colloids, gels, and aerogels generated by combining metal ions and ligands of biological interest, such as nucleobases, nucleotides, peptides, or amino acids, among other derivatives. The characteristic dynamism of coordination bonds between metal center and biocompatible-type ligands, together with molecular recognition capability of these ligands, are crucial to form colloids and gels. These supramolecular structures are generated by forming weak van der Waals bonds such as hydrogen bonds or π-π stacking between the aromatic rings.
View Article and Find Full Text PDFThis article aims to provide an overview of the studies focused on using coordination compounds as antiviral agents against different types of viruses. We present various strategies so far used to this end. This article is divided into two sections.
View Article and Find Full Text PDFThis review focuses on the usefulness of coordination bonds to create 3D printable inks and shows how the union of chemistry and 3D technology contributes to new scientific advances, by allowing amorphous or polycrystalline solids to be transformed into objects with the desired shape for successful applications. The review clearly shows how there has been considerable increase in the manufacture of objects based on the combination of organic matrices and coordination compounds. These coordination compounds are usually homogeneously dispersed within the matrix, anchored onto a proper support or coating the printed object, without destroying their unique properties.
View Article and Find Full Text PDFIn this work, three mono- and bidimensional coordination polymers (CPs) based on Cu(II) and Cu(I) ([Cu(TAcO)(CO)(4,4'-bpy)]·4HO (CP1), [Cu(UAcO)(CO)(4,4'-bpy)]·2HO (CP2) and [Cu(TAcO)(4,4'-bpy)] (CP3)), decorated with thymine and uracil-1-acetate (TAcO and UAcO), 4,4'-bipyridine (4,4'-bpy) and oxalate are synthetized. The supramolecular structures of the CPs are based on the formation of non-canonical hydrogen bonds established between the free moieties of nucleobases. Interestingly, the presence of Cu(II) centers provide for compound CP1, magnetism and semiconducting properties.
View Article and Find Full Text PDFIt is well known that an emotionally arousing experience usually results in a robust and persistent memory trace. The present study explored the potential mechanisms involved in the influence of stress on the consolidation of a contextual fear memory in animals subjected to a weak fear training protocol, and whether pretreatment with intra-basolateral amygdala or systemic administration of midazolam (MDZ) prevents the potential stress-induced influence on fear memory formation. A previous restraint session facilitated fear retention, this effect was not due to a sensitized effect of restraint on the footshock experience.
View Article and Find Full Text PDFThe extracellular signal-regulated kinase (ERK) pathway, which can be activated by NMDA receptor stimulation, is involved in fear conditioning and drug addiction. We have previously shown that withdrawal from chronic ethanol administration facilitated the formation of contextual fear memory. In order to explore the neural substrates and the potential mechanism involved in this effect, we examined: 1) the ERK1/2 activation in the central (CeA) and basolateral (BLA) nuclei of the amygdala and in the dorsal hippocampus (dHip), 2) the effect of the NMDA receptor antagonist MK-801 on fear conditioning and ERK activation and 3) the effect of the infusion of U0126, a MEK inhibitor, into the BLA on fear memory formation in ethanol withdrawn rats.
View Article and Find Full Text PDF