The level of unpredictability of the COVID-19 pandemics poses a challenge to effectively model its dynamic evolution. In this study we incorporate the inherent stochasticity of the SARS-CoV-2 virus spread by reinterpreting the classical compartmental models of infectious diseases (SIR type) as chemical reaction systems modeled via the Chemical Master Equation and solved by Monte Carlo Methods. Our model predicts the evolution of the pandemics at the level of municipalities, incorporating for the first time (i) a variable infection rate to capture the effect of mitigation policies on the dynamic evolution of the pandemics (ii) SIR-with-jumps taking into account the possibility of multiple infections from a single infected person and (iii) data of viral load quantified by RT-qPCR from samples taken from Wastewater Treatment Plants.
View Article and Find Full Text PDFThe spectrophotometric methodology for carbonate ion determination in seawater was first published in 2008 and has been continuously evolving in terms of reagents and formulations. Although being fast, relatively simple, affordable, and potentially easy to implement in different platforms and facilities for discrete and autonomous observations, its use is not widespread in the ocean acidification community. This study uses a merged overdetermined CO system data set (carbonate ion, pH, and alkalinity) obtained from 2009 to 2020 to assess the differences among the five current approaches of the methodology through an internal consistency analysis and discussing the sources of uncertainty.
View Article and Find Full Text PDFEnviron Sci Technol
September 2020
Ocean acidification (OA)-or the decrease in seawater pH resulting from ocean uptake of CO released by human activities-stresses ocean ecosystems and is recognized as a Climate and Sustainable Development Goal Indicator that needs to be evaluated and monitored. Monitoring OA-related pH changes requires a high level of precision and accuracy. The two most common ways to quantify seawater pH are to measure it spectrophotometrically or to calculate it from total alkalinity (TA) and dissolved inorganic carbon (DIC).
View Article and Find Full Text PDFMeasurements of ocean pH, alkalinity, and carbonate ion concentrations ([CO3(2-)]) during three cruises in the Atlantic Ocean and one in the Mediterranean Sea were used to assess the reliability of the recent spectrophotometric [CO3(2-)] methodology and to determine aragonite saturation states. Measurements of [CO3(2-)] along the Atlantic Ocean showed high consistency with the [CO3(2-)] values calculated from pH and alkalinity, with negligible biases (0.4 ± 3.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2015
Global ocean acidification is caused primarily by the ocean's uptake of CO2 as a consequence of increasing atmospheric CO2 levels. We present observations of the oceanic decrease in pH at the basin scale (50 °S-36 °N) for the Atlantic Ocean over two decades (1993-2013). Changes in pH associated with the uptake of anthropogenic CO2 (ΔpHCant) and with variations caused by biological activity and ocean circulation (ΔpHNat) are evaluated for different water masses.
View Article and Find Full Text PDF