The process of mitochondrial fission-fusion has been implicated in diverse neuronal roles including neuronal survival, axon degeneration, and axon regeneration. However, whether increased fission or fusion is beneficial for neuronal health and/or axonal growth is not entirely clear, and is likely situational and cell type-dependent. In searching for mitochondrial fission-fusion regulating proteins for improving axonal growth within the visual system, we uncover that mitochondrial fission process 1,18 kDa (MTP18/MTFP1), a pro-fission protein within the CNS, is critical to maintaining mitochondrial size and volume under normal and injury conditions, in retinal ganglion cells (RGCs).
View Article and Find Full Text PDFPurpose: Corneal endothelial dysfunction leads to corneal edema, pain, and vision loss. Adequate animal models are needed to study the safety and efficacy of novel cell therapies as an alternative to corneal transplantation.
Methods: Primary human corneal endothelial cells (HCECs) were isolated from cadaveric donor corneas, expanded in vitro, transduced to express green fluorescent protein (GFP), loaded with superparamagnetic nanoparticles, and injected into the anterior chamber of adult rabbits immediately after endothelial cell or Descemet's membrane stripping.
Purpose: Adult central nervous system (CNS) neurons are unable to regenerate their axons after injury. Krüppel-like transcription factor (KLF) family members regulate intrinsic axon growth ability in vitro and in vivo, but mechanisms downstream of these transcription factors are not known.
Methods: Purified retinal ganglion cells (RGCs) were transduced to express exogenous KLF9, KLF16, KLF7, or KLF11; microarray analysis was used to identify downstream genes, which were screened for effects on axon growth.
Invest Ophthalmol Vis Sci
March 2018
Purpose: Cell-based therapies to replace corneal endothelium depend on culture methods to optimize human corneal endothelial cell (HCEC) function and minimize endothelial-mesenchymal transition (EnMT). Here we explore contribution of low-mitogenic media on stabilization of phenotypes in vitro that mimic those of HCECs in vivo.
Methods: HCECs were isolated from cadaveric donor corneas and expanded in vitro, comparing continuous presence of exogenous growth factors ("proliferative media") to media without those factors ("stabilizing media").
Neurons in the adult mammalian CNS decrease in intrinsic axon growth capacity during development in concert with changes in Krüppel-like transcription factors (KLFs). KLFs regulate axon growth in CNS neurons including retinal ganglion cells (RGCs). Here, we found that knock-down of KLF9, an axon growth suppressor that is normally upregulated 250-fold in RGC development, promotes long-distance optic nerve regeneration in adult rats of both sexes.
View Article and Find Full Text PDFPurpose: Human corneal endothelial cell (HCEC) density decreases with age, surgical complications, or disease, leading to vision impairment. Such endothelial dysfunction is an indication for corneal transplantation, although there is a worldwide shortage of transplant-grade tissue. To overcome the current poor donor availability, here we isolate, expand, and characterize HCECs in vitro as a step toward cell therapy.
View Article and Find Full Text PDFAim: To generate human embryonic stem cell derived corneal endothelial cells (hESC-CECs) for transplantation in patients with corneal endothelial dystrophies.
Materials And Methods: Feeder-free hESC-CECs were generated by a directed differentiation protocol. hESC-CECs were characterized by morphology, expression of corneal endothelial markers, and microarray analysis of gene expression.
To improve the delivery and integration of cell therapy using magnetic cell guidance for replacement of corneal endothelium, here we assess magnetic nanoparticles' (MNPs') effects on human corneal endothelial cells (HCECs) in vitro. Biocompatible, 50 nm superparamagnetic nanoparticles endocytosed by cultured HCECs induced no short- or long-term change in viability or identity. Assessment of guidance of the magnetic HCECs in the presence of different magnet shapes and field strengths showed a 2.
View Article and Find Full Text PDFEndothelial cell dysfunction as in Fuchs dystrophy or pseudophakic bullous keratopathy, and the limited regenerative capacity of human corneal endothelial cells (HCECs), drive the need for corneal transplant. In response to limited donor corneal availability, significant effort has been directed towards cell therapy as an alternative to surgery. Stimulation of endogenous progenitors, or transplant of stem cell-derived HCECs or -expanded, donor-derived HCECs could replace traditional surgery with regenerative therapy.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
November 2013
Purpose: Amacrine cell neurite patterning has been extensively studied in vivo, and more than 30 subpopulations with varied morphologies have been identified in the mammalian retina. It is not known, however, whether the complex amacrine cell morphology is determined intrinsically, is signaled by extrinsic cues, or both.
Methods: Here we purified rat amacrine cell subpopulations away from their retinal neighbors and glial-derived factors to ask questions about their intrinsic neurite growth ability.
The regulation of retinal ganglion cell (RGC) axon growth and patterning in vivo is thought to be largely dependent on interactions with visual pathway and target cells. Here we address the hypothesis that amacrine cells, RGCs' presynaptic partners, regulate RGC axon growth or targeting. We asked whether amacrine cells play a role in RGC axon growth in vivo using Foxn4(-/-) mice, which have fewer amacrine cells, but a normal complement of RGCs.
View Article and Find Full Text PDFPURPOSE. To describe how developing amacrine cells and retinal ganglion cells (RGCs) differ in survival signaling and global gene expression. METHODS.
View Article and Find Full Text PDFTo what extent do postmitotic neurons regulate gene expression during development or after injury? We took advantage of our ability to highly purify retinal ganglion cells (RGCs) to profile their pattern of gene expression at 13 ages from embryonic day 17 through postnatal day 21. We found that a large proportion of RGC genes are regulated dramatically throughout their postmitotic development, although the genes regulated through development in vivo generally are not regulated similarly by RGCs allowed to age in vitro. Interestingly, we found that genes regulated by developing RGCs are not generally correlated with genes regulated in RGCs stimulated to regenerate their axons.
View Article and Find Full Text PDF