Unlabelled: Xerostomia emerges as a consequence of salivary gland hypofunction, and seriously compromises the integrity of hard and soft oral tissues, whileperiodontitis is an infectious disease characterized by biofilm accumulation, inflammation and alveolar bone resorption.
Aim: The aim this study was to compare the deleterious effects caused by experimental hyposalivation, periodontitis, and the combination of both on periodontal tissues and mandibular biomechanics in rats.
Materials And Method: Hyposalivation (group H) was induced through bilateral submandibulectomy.
The aims of the present study were, first, to identify signs of alveolar bone damage in early stages of experimental periodontitis (EP) and, second, to assess its possible prevention by treatment with cannabinoid receptor 2 agonist HU 308. Experimental periodontitis was induced by injections of lipopolysaccharide (LPS) (1mg/ml) in gums surrounding maxillary and mandibular first molar, 3 days per week, and untreated controls were kept for comparison. Then, a 3-week study was conducted including eighteen new rats (six rats per group): 1) controls; 2) experimental periodontitis rats; and 3) experimental periodontitis rats treated daily with HU 308 (500 ng/ml).
View Article and Find Full Text PDFBackground: Transient receptor potential vanilloid type-1 (TRPV1) is expressed in oral tissues cells and its activity can be regulated by inflammation products and anandamide. The aim of the present study was to evaluate the effects of blocking TRPV1 or specific cannabinoid receptors 1 (CB1r) and 2 (CB2r) on periodontal status of rats subjected to experimental periodontitis (EP).
Methods: Male rats were distributed in groups 1) control, 2) lipopolysaccharide-induced EP (LPS), and 3) LPS plus capsazepine (Capz, TRPV1 antagonist) application (LPS+Capz).
Extracellular nucleotides modulate a wide number of biological processes such as neurotransmission, platelet aggregation, muscle contraction, and epithelial secretion acting by the purinergic pathway. Nucleotidases as NTPDases and ecto-5'-nucleotidase are membrane-anchored proteins that regulate extracellular nucleotide concentrations. In a previous work, we have partially characterized an NTPDase-like activity expressed by rat submandibular gland microsomes, giving rise to the hypothesis that membrane NTPDases could be released into salivary ducts to regulate luminal nucleotide concentrations as was previously proposed for ovarian, prostatic, and pancreatic secretions.
View Article and Find Full Text PDF