In recent years, the rapid alkalinization factor (RALF) family of cysteine-rich peptides has been reported to be crucial for several plant signaling mechanisms, including cell growth, plant immunity and fertilization. RALF4 and RALF19 (RALF4/19) pollen peptides redundantly regulate the pollen tube integrity and growth through binding to their receptors ANXUR1/2 (ANX1/2) and Buddha's Paper Seal 1 and 2 (BUPS1/2), members of the RLK1-like (CrRLK1L) family, and, thus, are essential for plant fertilization. However, the signaling mechanisms at the cellular level that follow these binding events remain unclear.
View Article and Find Full Text PDFThe pollen and pistil RALF peptides, along with multiple receptor-like kinases and leucine-rich repeat extensins, regulate pollen tube growth and the final burst within the ovule, where sperm cells are released for fertilisation to occur. This review introduces some new questions that arose about the regulation of this complex process.
View Article and Find Full Text PDFChloroplast transformation has many potential advantages for the production of recombinant proteins in plants. However, it has been reported that chloroplast expression of many proteins, such as human epidermal growth factor (hEGF), results hindered by post-transcriptional mechanisms. hEGF degradation has been related to the redox potential of the stroma and protein misfolding.
View Article and Find Full Text PDFPlants are continuously challenged by pathogens, affecting most staple crops compromising food security. They have evolved different mechanisms to counterattack pathogen infection, including the accumulation of pathogenesis-related (PR) proteins. These proteins have been implicated in active defense, and their overexpression has led to enhanced resistance in nuclear transgenic plants, although in many cases constitutive expression resulted in lesion-mimic phenotypes.
View Article and Find Full Text PDF