Publications by authors named "Noel W Duffy"

Metal nanoparticles can photosensitize two-dimensional metal oxides, facilitating their electrical connection to devices and enhancing their abilities in catalysis and sensing. In this study, we investigated how individual silver nanoparticles interact with two-dimensional tin oxide and antimony-doped indium oxide using electron energy loss spectroscopy (EELS). The measurement of the spectral line width of the longitudinal plasmon resonance of the nanoparticles in absence and presence of 2D materials allowed us to quantify the contribution of chemical interface damping to the line width.

View Article and Find Full Text PDF

Plasmon-induced energy and charge transfer from metal nanostructures hold great potential for harvesting solar energy. Presently, the efficiencies of charge-carrier extraction are still low due to the competitive ultrafast mechanisms of plasmon relaxation. Using single-particle electron energy loss spectroscopy, we correlate the geometrical and compositional details of individual nanostructures to their carrier extraction efficiencies.

View Article and Find Full Text PDF
Article Synopsis
  • Transition metal complexes are a budget-friendly option for hole-transport materials in perovskite solar cells, but their performance has been initially low.
  • By adjusting energy levels, researchers increased the power conversion efficiency of these solar cells from 2% to over 10%.
  • The devices using an additive-free transition metal complex HTM also showed impressive photostability.
View Article and Find Full Text PDF

Defects at discontinuities of the perovskite lattice limit the performance of the perovskite solar cell (PSC). Lead iodide (PbI) and pyridine have been shown to passivate these defects. We treat methylammonium lead iodide (MAPbI) films with pyridine solutions to investigate the effects of the two passivators.

View Article and Find Full Text PDF

Nanostructured tin (IV) oxide (SnO ) is emerging as an ideal inorganic electron transport layer in n-i-p perovskite devices, due to superior electronic and low-temperature processing properties. However, significant differences in current-voltage performance and hysteresis phenomena arise as a result of the chosen fabrication technique. This indicates enormous scope to optimize the electron transport layer (ETL), however, to date the understanding of the origin of these phenomena is lacking.

View Article and Find Full Text PDF

Mixed organolead halide perovskites (MOHPs), CH NH Pb(Br I ) , have been shown to undergo phase segregation into iodide-rich domains under illumination, which presents a major challenge to their development for photovoltaic and light-emitting devices. Recent work suggested that phase-segregated domains are localized at crystal boundaries, driving investigations into the role of edge structure and the growth of larger crystals with reduced surface area. Herein, a method for growing large (30×30×1 μm ) monocrystalline MAPb(Br I ) single crystals is presented.

View Article and Find Full Text PDF

A smooth and compact light absorption perovskite layer is a highly desirable prerequisite for efficient planar perovskite solar cells. However, the rapid reaction between CHNHI methylammonium iodide (MAI) and PbI often leads to an inconsistent CHNHPbI crystal nucleation and growth rate along the film depth during the two-step sequential deposition process. Herein, a facile solvent additive strategy is reported to retard the crystallization kinetics of perovskite formation and accelerate the MAI diffusion across the PbI layer.

View Article and Find Full Text PDF

Hybrid organic-inorganic halide perovskites are low-cost solution-processable solar cell materials with photovoltaic properties that rival those of crystalline silicon. The perovskite films are typically sandwiched between thin layers of hole and electron transport materials, which efficiently extract photogenerated charges. This affords high-energy conversion efficiencies but results in significant performance and fabrication challenges.

View Article and Find Full Text PDF

Organo-lead halide perovskites (OHPs) have recently emerged as a new class of exceptional optoelectronic materials, which may find use in many applications, including solar cells, light emitting diodes, and photodetectors. More complex applications, such as lasers and electro-optic modulators, require the use of monocrystalline perovskite materials to reach their ultimate performance levels. Conventional methods for forming single crystals of OHPs like methylammonium lead bromide (MAPbBr ) afford limited control over the product morphology, rendering the assembly of defined microcavity nanostructures difficult.

View Article and Find Full Text PDF

We present the first colloidal synthesis of Ge-doped ZnO nanocrystals, which are produced by a scalable method that uses only air and moisture stable precursors. The incorporation of tetravalent Ge ions within ZnO nanocrystals generates a surface plasmon resonance in the near-mid infrared, and induces a change in morphology, from isotropic spheroidal nanocrystals to rod-like, elongated structures with a distinctive c-axis orientation.

View Article and Find Full Text PDF

Solution processing provides a versatile and inexpensive means to prepare functional materials with specifically designed properties. The current challenge is to mimic the structural, optical, and/or chemical properties of thin films fabricated by vacuum-based techniques using solution-based approaches. In this work we focus on ZnO to show that thin films grown using a simple, aqueous-based, chemical bath deposition (CBD) method can mimic the properties of sputtered coatings, provided that the kinetic and thermodynamic reaction parameters are carefully tuned.

View Article and Find Full Text PDF

A facile ligand exchange method for dispersing Cu2ZnSnS4 (CZTS) nanocrystals (NCs) in environmentally benign polar solvents, such as ethanol or n-propanol, at high concentrations (up to 200 mg/mL) is demonstrated. This approach has been applied to CZTS nanocrystals synthesized via scalable, noninjection methods to formulate colloidally stable inks that are suitable for the solution processing of solar cell devices. Unlike other inks currently used to fabricate NC solar cells, the CZTS nanocrystal ink developed here circumvents the need for hydrazine, pyridine, or thiol coordinating solvents.

View Article and Find Full Text PDF

Herein, we present the novel synthesis of tetrahedrite copper antimony sulfide (CAS) nanocrystals (Cu12Sb4S13), which display strong absorptions in the visible and NIR. Through ligand tuning, the size of the Cu12Sb4S13 NCs may be increased from 6 to 18 nm. Phase purity is achieved through optimizing the ligand chemistry and maximizing the reactivity of the antimony precursor.

View Article and Find Full Text PDF

Co-produced: using [Co(en)(3)](2+/3+) based-electrolytes in p-type dye-sensitized solar cells (p-DSCs) gives record energy conversion efficiencies of 1.3 % and open-circuit voltages up to 709 mV under simulated sun light. The increase in photovoltage is due to the more negative redox potential of [Co(en)(3)](2+/3+) compared to established mediators.

View Article and Find Full Text PDF

Dye-sensitized solar cells (DSCs) are an attractive renewable energy technology currently under intense investigation. In recent years, one area of major interest has been the exploration of alternatives to the classical iodide/triiodide redox shuttle, with particular attention focused on cobalt complexes with the general formula [Co(L)(n)](2+/3+). We introduce a new approach to designing redox mediators that involves the application of [Co(PY5Me(2))(MeCN)](2+/3+) complexes, where PY5Me(2) is the pentadentate ligand, 2,6-bis(1,1-bis(2-pyridyl)ethyl)pyridine.

View Article and Find Full Text PDF

The flow rate dependencies of the aperiodic direct current (dc) and fundamental to eighth alternating current (ac) harmonic components derived from large-amplitude Fourier transformed ac (FT-ac) voltammetry have been evaluated in a microfluidic flow cell containing a 25 μm gold microband electrode. For the oxidation of ferrocenemethanol ([FcMeOH]/[FcMeOH](+) process) in aqueous 0.1 M KNO(3) electrolyte, standard "Levich-like" dc behavior is observed for the aperiodic dc component, which enables the diffusion coefficient for FcMeOH to be obtained.

View Article and Find Full Text PDF

Solar energy conversion efficiencies of over 4% have been achieved in DSCs constructed with aqueous electrolytes based on the ferricyanide-ferrocyanide redox couple, thereby avoiding the use of expensive, flammable and toxic solvents. This paradigm shift was made possible by the use of a hydrophobic organic carbazole dye.

View Article and Find Full Text PDF

Dye-sensitized solar cells based on iodide/triiodide (I(-)/I(3)(-)) electrolytes are viable low-cost alternatives to conventional silicon solar cells. However, as well as providing record efficiencies of up to 12.0%, the use of I(-)/I(3)(-) in such solar cells also brings about certain limitations that stem from its corrosive nature and complex two-electron redox chemistry.

View Article and Find Full Text PDF

Under most experimental conditions, a distinctly nonlinear background current is encountered in all forms of voltammetry which arises from the potential dependence of the capacitance. The nonlinear background current has been successfully modeled under large amplitude sinusoidal ac voltammetric conditions with a fourth order polynomial. The model was applied to a dummy cell containing a nonideal ceramic capacitor and commonly used electrodes.

View Article and Find Full Text PDF

A Th(IV) compound, [Th(TFSI)4(HTFSI)].2H2O [where TFSI = N(SO2CF3)2], has been synthesized and characterized using elemental analysis, thermogravimetric analysis, and vibrational spectroscopy. The analysis suggests that the TFSI anion coordinates to the metal center via the sulfonyl oxygens as well as provides evidence for the coordination of HTFSI.

View Article and Find Full Text PDF

Large-amplitude sinusoidal ac voltammetric techniques, when analyzed in the frequency domain using the Fourier transform-inverse Fourier transform sequence, produce the expected dc and fundamental harmonic ac responses in addition to very substantial second, third, and higher ac harmonics that arise from the presence of significant nonlinearity. A full numerical simulation of the process, Red right arrow over left arrow Ox + e(-), incorporates terms for the uncompensated resistance (R(u)), capacitance of the double layer (C(dl)), and slow electron transfer kinetics (in particular, the reversible potential (E degrees ), rate constant (k(0)), and charge transfer coefficient (alpha) from the Butler-Volmer model). Identification of intuitively obvious patterns of behavior (with characteristically different sensitivity regimes) in dc, fundamental, and higher harmonic terms enables simple protocols to be developed to estimate R(u), C(dl), E degrees , k(0), and alpha.

View Article and Find Full Text PDF

EPR spectra are reported for four metal complexes of 2,3-bis(diphenylphosphino)maleic anhydride (BMA), [Co(2)(PhCCR)(CO)(4)(eta-BMA)](-), R = Ph, H, [Co(2)(PhCCPh)(CO)(4)(&mgr;-BMA)](-), and [PhCW(CO)(2)(BMA)Cl](-), as well as the radical anions, [BMA](-) and [BPCD](-), BPCD = 4,5-bis(diphenylphosphino)cyclopentene-1,3-dione. At room temperature, all spectra are 1:2:1 triplets due to hyperfine coupling to two equivalent (31)P nuclei with coupling to two equivalent (1)H nuclei for [BPCD](-) and unresolved coupling to one or two (59)Co nuclei for the Co complexes with chelating or bridging BMA, respectively. The (31)P couplings are temperature dependent, ca.

View Article and Find Full Text PDF