Publications by authors named "Noel Vera-Gonzalez"

Fungal infections can lead to debilitating consequences if they are not treated effectively. Antifungal drugs used to treat these infections can be toxic and overuse contributes to growing antifungal resistance. Candida spp.

View Article and Find Full Text PDF

Microbe entry through catheter ports can lead to biofilm accumulation and complications from catheter-related bloodstream infection and ultimately require antimicrobial treatment and catheter replacement. Although strides have been made with microbial prevention by applying standardized antiseptic techniques during catheter implantation, both bacterial and fungal microbes can present health risks to already sick individuals. To reduce microbial adhesion, murine and human catheters were coated with polyurethane and auranofin using a dip coating method and compared to non-coated materials.

View Article and Find Full Text PDF

species can readily colonize a multitude of indwelling devices, leading to biofilm formation. These three-dimensional, surface-associated communities employ a multitude of sophisticated mechanisms to evade treatment, leading to persistent and recurrent infections with high mortality rates. Further complicating matters, the current arsenal of antifungal therapeutics that are effective against biofilms is extremely limited.

View Article and Find Full Text PDF

Fungal infections can cause significant patient morbidity and mortality. Nanoparticle therapeutics have the potential to improve treatment of these infections. Here we report the development of liposomal nanoparticles incorporating anidulafungin, a potent antifungal, with the goal of increasing its solubility and aiding in localization to fungi.

View Article and Find Full Text PDF

Intravascular catheter related bloodstream infections (CRBSIs) are a leading cause of hospital-acquired infections worldwide, resulting not only in the burden of cost and morbidity for patients but also in the over-consumption of medical resources for hospitals and health care organizations. In this study, a novel auranofin releasing antibacterial and antibiofilm polyurethane (PU) catheter coating was developed and investigated for future use in preventing CRBSIs. Auranofin is an antirheumatic drug with recently identified antimicrobial properties.

View Article and Find Full Text PDF