Publications by authors named "Noel Perrier"

Cholinesterases have been intensively studied for a long time, but still offer many fascinating and fundamental questions regarding their evolution, activity, biosynthesis, folding, post-translational modifications, association with structural proteins (ColQ, PRiMA and maybe others), export or degradation. They constitute an excellent model to study these processes, particularly because of the sensitivity and specificity of enzymic assays. In addition, a number of provocative ideas concerning their proposed non-conventional, or non-catalytic functions deserve to be further documented.

View Article and Find Full Text PDF

The gene of mammalian acetylcholinesterase (AChE) generates multiple molecular forms, by alternative splicing of its transcripts and association of the tailed variant (AChET) with structural proteins. In the mammalian brain, the major AChE species consists of AChET tetramers anchored to the cell membrane of neurons by the PRiMA protein (Perrier et al., 2002).

View Article and Find Full Text PDF

In vertebrates, the catalytic domain of acetylcholinesterase (AChE) may be associated with several C-terminal peptides generated by alternative splicing in the 3' region of transcripts. The "readthrough" (R) variant results from a lack of splicing after the last exon encoding the catalytic domain. Such a variant has been observed in Torpedo and in mammals; its C-terminal r peptide, also called "AChE Related Peptide" (ARP), is poorly conserved between rodents and humans.

View Article and Find Full Text PDF

Acetylcholinesterase (AChE) exists in various molecular forms, depending on alternative splicing of its transcripts and association with structural proteins. Tetramers of the 'tailed' variant (AChE(T)), which are anchored in the cell membrane of neurons by the PRiMA (Proline Rich Membrane Anchor) protein, constitute the main form of AChE in the mammalian brain. In the mouse brain, stress and anticholinesterase inhibitors have been reported to induce expression of the unspliced 'readthrough' variant (AChE(R)) mRNA which produces a monomeric form.

View Article and Find Full Text PDF

The C-terminal 40-residue t peptide of acetylcholinesterase (AChE) forms an amphiphilic alpha helix with a cluster of seven aromatic residues. It allows oligomerization and induces a partial degradation of AChE subunits through the endoplasmic reticulum-associated degradation pathway. We show that the t peptide induces the misfolding of a fraction of AChE subunits, even when mutations disorganized the cluster of aromatic residues or when these residues were replaced by leucines, indicating that this effect is due to hydrophobic residues.

View Article and Find Full Text PDF

We analysed the expression of PRiMA (proline-rich membrane anchor), the membrane anchor of acetylcholinesterase (AChE), by in situ hybridization in the mouse brain. We compared the pattern of PRiMA transcripts with that of AChE transcripts, as well as those of choline acetyltransferase and M1 muscarinic receptors which are considered pre- and postsynaptic cholinergic markers. We also analysed cholinesterase activity and its molecular forms in several brain structures.

View Article and Find Full Text PDF