Publications by authors named "Noel P Martinez"

A binary-lens-embedded photonic crystal (B-LEPC) was designed for operation at 1550 nm and fabricated by multiphoton lithography. The lens is binary in the sense that optical path difference is generated using unit cells having just two distinct fill factors. The unit cells have a "rod-in-wall" structure that exhibits three-dimensional self-collimation.

View Article and Find Full Text PDF

Wide-angle, broadband self-collimation (SC) is demonstrated in a hexagonal photonic crystal (PhC) fabricated in a low-refractive-index photopolymer by multiphoton lithography. The PhC can be described as a hexagonal array of cylindrical air holes in a block of dielectric material having a low-refractive index. Optical characterization shows that the device strongly self-collimates light at near-infrared wavelengths that span 1360 to 1610 nm.

View Article and Find Full Text PDF

Self-collimating photonic crystals are a promising technology to control waves in optical devices. A technique was recently developed that can bend, twist, and otherwise spatially vary a photonic crystal without deforming the unit cells, as this would weaken or destroy the optical properties. Applying this to self-collimating photonic crystals allows us to control multiple properties of light at the same time.

View Article and Find Full Text PDF