Publications by authors named "Noel Nesakumar"

Urinary tract infections (UTIs) present an escalating global health concern, precipitating increased hospitalizations and antibiotic utilization, thereby fostering the emergence of antimicrobial resistance. Current diagnostic modalities exhibit protracted timelines and substantial financial burdens, necessitating specialized infrastructures. Addressing these impediments mandates the development of a precise diagnostic paradigm to expedite identification and augment antibiotic stewardship.

View Article and Find Full Text PDF

Cortisol, a crucial steroid hormone synthesized by the adrenal glands, has diverse impacts on multiple physiological processes, such as metabolism, immune function, and stress management. Disruption in cortisol levels can result in conditions like Cushing's syndrome and Addison's disease. This review provides an in-depth exploration of cortisol, covering its structure, various forms in the body, detection methodologies, and emerging trends in cancer treatment and detection.

View Article and Find Full Text PDF

This review provides a comprehensive overview of the latest advancements in wearable biosensors, emphasizing their applications in cardiovascular disease monitoring. Initially, the key sensing signals and biomarkers crucial for cardiovascular health, such as electrocardiogram, phonocardiography, pulse wave velocity, blood pressure, and specific biomarkers, are highlighted. Following this, advanced sensing techniques for cardiovascular disease monitoring are examined, including wearable electrophysiology devices, optical fibers, electrochemical sensors, and implantable cardiac devices.

View Article and Find Full Text PDF

Colorectal cancer, breast cancer, oxidative DNA damage, and viral infections are all significant and major health threats to human health, presenting substantial challenges in early diagnosis. In this regard, a wide range of nucleic acid-based electrochemical platforms have been widely employed as point-of-care diagnostics in health care and biosensing technologies. This review focuses on biosensor design strategies, underlying principles involved in the development of advanced electrochemical genosensing devices, approaches for immobilizing DNA on electrode surfaces, as well as their utility in early disease diagnosis, with a particular emphasis on cancer, leukaemia, oxidative DNA damage, and viral pathogen detection.

View Article and Find Full Text PDF

Methylglyoxal (MG), a highly reactive by-product of glycolysis, is involved in the formation of advanced glycation end-products (AGEs). Elevated levels of MG have been correlated with micro-and macro-angiopathic complications in diabetes, including neuropathy, kidney disease, retinopathy, and cardiovascular disease. Therefore, point-of-care devices for detecting MG may be of great use in the screening of diabetes complications.

View Article and Find Full Text PDF

Researchers are continually seeking potential alternatives to develop water quality sensors with higher selectivity to obtain the desired performance during real-time deployment. Quantification technologies involving interface materials of distinguishing capacity at elevated matrix complexity are desirable. However, there remains a challenge in designing suitable techniques, methodologies, and appropriate validations to support the grounds for the selection of interface materials of enhanced selectivity.

View Article and Find Full Text PDF

Real-time assessment of an active ingredient imidacloprid in the water matrix is critically momentous in monitoring the levels of pesticide contaminants in water bodies. Conventional approaches predominantly deal with the detection of imidacloprid, relying on the purified analytical grade compound. Herein, we report an organic/inorganic composite (f-MWCNT/EDTA) integrated electrochemical sensor for the real-time analysis of analytical grade imidacloprid and extended the performance evaluation in agriculture-purpose imidacloprid compound used commercially by farmers.

View Article and Find Full Text PDF

GQDs exhibits exceptional electrochemical activity owing to their active edge sites that make them very attractive for biosensing applications. However, their use in the design of new biosensing devices for application to the detection and quantification of toxins, pathogens, and clinical biomarkers has so far not investigated in detail. In this regard, herein we provide a detailed review on various methodologies employed for the synthesis of GQDs, including bottom-up and top-down approaches, with a special focus on their applications in biosensing via fluorescence, photoluminescence, chemiluminescence, electrochemiluminescence, fluorescence resonance energy transfer, and electrochemical techniques.

View Article and Find Full Text PDF

MXenes are layered two-dimensional (2D) materials discovered in 2011 (TiCX) and are otherwise called 2D transition metal carbides, carbonitrides, and nitrides. These 2D layered materials have been in the limelight for a decade due to their interesting properties such as large surface area, high ion transport, biocompatibility, and low diffusion barrier. Therefore, MXenes are widely preferred by researchers for applications in electronics, sensing, biosensing, electrocatalysis, super-capacitors and fuel cells.

View Article and Find Full Text PDF

The traditional three-electrode electrochemical system used in the development of biosensors for detecting various biomarkers of interest necessitates the use of bulk electrodes, which precludes the deployment of handheld electrochemical devices in clinical applications. Affordable screen-printed carbon electrodes (SPCEs) modified with functional interfaces are being developed to enhance the sensitivity of a compact sensing system as a whole. In this work, SPCEs were fabricated on an overhead projection (OHP) sheet in three different active areas of 2 × 2, 3 × 3, and 4 × 4 mm using a screen printing technique, and then ∼2 nm sized graphene quantum dots (GQDs) were electrodeposited over the SPCE surface to add functionality for the detection of ultralow levels of one of the cardiac biomarkers, C-reactive protein (CRP).

View Article and Find Full Text PDF

The highly pathogenic MERS-CoV, SARS-CoV and SARS-CoV-2 cause acute respiratory syndrome and are often fatal. These new viruses pose major problems to global health in general and primarily to infection control and public health services. Accurate and selective assessment of MERS-CoV, SARS-CoV and SARS-CoV-2 would assist in the effective diagnosis of infected individual, offer clinical guidance and aid in assessing clinical outcomes.

View Article and Find Full Text PDF

The fabrication of electrochemical sensor for the ultra-low-level detection and quantification of Imidacloprid (IMD) in soil is one of the major challenges in real-time analysis. Herein, a three-electrode system for sensing IMD at low levels has been developed using Cu-rGO nanofiber composite modified glassy carbon working electrode, Ag/AgCl reference and platinum wire counter electrodes. In the presence of IMD, a significant enhancement in voltammetric current responses were observed at 0.

View Article and Find Full Text PDF

According to the World Health Organization (WHO), cardiovascular disease (CVD) is the leading cause of death in the world every year. The design and development of biosensors for the detection of CVD markers could be one of the major contributions of the scientific community to society. In this context, acetic acid functionalized graphene quantum dots (fGQDs) were used as an interface for the electrochemical detection of cardiac Troponin I (cTnI).

View Article and Find Full Text PDF

Different compositions of trimetallic alloy containing silver, copper, and nickel (Ag Cu Ni ) were electrodecorated in a protic ionic liquid medium on glassy carbon electrodes in order to investigate the suitability of the materials as catalysts for electrochemical reduction of carbon dioxide (CO). Surface characteristic morphology obtained by scanning electron microscopy shows cauliflower crystallites for the deposit of Ag, whereas materials of Cu and Ni exhibit cubic grains and fine particles, respectively. Deposits of trimetallic alloy containing Ag, Cu, and Ni exhibit the mixture of the three characteristic features.

View Article and Find Full Text PDF

Substantially, noble metals are important for the development of low-cost, sensitive, selective, superior performance, and portable electrochemical sensors. Herein, we describe gold (Au) nanoparticles (NPs) systematically decorated with magnetic FeO nanocomposites on the fabrication of sensitive dopamine sensor is described. Magnetic Au@FeO nanocomposites were prepared by reducing HAuCl on the surfaces of FeO nanoparticles.

View Article and Find Full Text PDF

Electrodeposition of lanthanum (La) thin film had been successfully carried out in the triethylmethy-lammonium methyl sulfate (TEMAMS) ionic liquid on boron-doped diamond (BDD), glassy carbon (GC) and platinum (Pt) electrodes. The electrolyte shows highest electrochemical stability window of 4.88 V on the BDD, followed by the GC (4.

View Article and Find Full Text PDF

Increased consumption of fried foods such as grilled chicken contains elevated levels of methylglyoxal (MG), which is associated with diabetes mellitus. Hence, in this work, glyoxalase 1(GLO 1) based, zinc oxide (ZnO) flakes interfaced mediator free electrochemical biosensor was developed to detect MG in grilled chicken. ZnO flakes were synthesized by direct precipitation method.

View Article and Find Full Text PDF

Foodborne pathogens cause serious health issues and have a strong impact on the economy of the country. In this context, quality testing of royal delicious apple by detecting pathogen contamination using an electronic nose, which contains an array of six ready-made sensors, has been proposed. To estimate the types of pathogens, fresh, half and completely contaminated apple samples were considered for bacterial studies.

View Article and Find Full Text PDF

The moisture content of beetroot varies during long-term cold storage. In this work, we propose a strategy to identify the moisture content and age of beetroot using principal component analysis coupled Fourier transform infrared spectroscopy (FTIR). Frequent FTIR measurements were recorded directly from the beetroot sample surface over a period of 34 days for analysing its moisture content employing attenuated total reflectance in the spectral ranges of 2614-4000 and 1465-1853 cm with a spectral resolution of 8 cm.

View Article and Find Full Text PDF

Hydrogen peroxide (H2O2) is considered to be highly toxic and its increased concentration in human body may lead to diseases like alzheimer's, parkinson's, cardiovascular, tumor and cancer. Hence, there is an increasing demand for the detection of H2O2 in human blood serum. In this context, an electrochemical sensor was developed using zinc oxide-polyvinyl alcohol (ZnO-PVA) nanocomposite as a nano-interface.

View Article and Find Full Text PDF

Increased consumption of raw and par-boiled rice results in the formation of methylglyoxal (MG) at higher concentration and leads to complications in diabetic patients. Highly sensitive electrochemical biosensor was developed using glutathione (GSH) as a co-factor with vanadium pentoxide (VO) as a nano-interface for MG detection in rice samples. The Pt/VO/GSH/Chitosan bioelectrode displayed two well-defined redox peaks in its cyclic voltammograms for MG reduction.

View Article and Find Full Text PDF

Acetylcholinesterase (AChE) enzyme has been predominantly used for the detection of pesticides and metal ions. But, these sensors respond to pesticides as well as metal ions at certain concentration, which results in poor selectivity. Hence in this work, the amount of thiocholine produced during AChE inhibition has been estimated to detect the residual activity of AChE enzyme in-turn to enhance the efficiency of the biosensor.

View Article and Find Full Text PDF

A novel bio-analytical method has been devised based on the change in catalytic activity of acetylcholinesterase (AChE) enzyme induced by captan, carbosulfan, 2,3,7,8-tetrachlorodibenzodioxin (TCDD) and pentachlorophenol (PCP) for the investigation of inhibition efficiency and sensitivity using Pt/ZnO/AChE/Chitosan bioelectrode. The inhibition curves of captan, carbosulfan, TCDD and PCP were similar to Michaelis-Menten curve. TCDD held the minimum inhibitor Michaelis-Menten constant ([Formula: see text]) value (10.

View Article and Find Full Text PDF

The consumption of carbosulfan-contaminated rice affects the immune and lymphocyte response, germinal centers in the spleen, plasma cells in popliteal lymphoid nodes, bone marrow cells and granulocyte-macrophage progenitor cells. Towards this, a highly sensitive acetylcholinesterase (AChE) cyclic voltammetric biosensor based on zinc oxide (ZnO) nanocuboids modified platinum (Pt) electrode has been successfully developed. The Pt/ZnO/AChE/Chitosan bio-electrode was employed for the electrochemical detection of carbosulfan in rice sample.

View Article and Find Full Text PDF

The presence of captan residues in apples shows high toxicity, which often causes eye and skin irritation, dermatitis, conjunctivitis, and vomiting in humans. In this context, an electrochemical biosensor based on acetylcholinesterase (AChE) immobilized on a ZnO nanorod interface has been proposed. In this work, Hill, dose-response, and first-, second-, and third-order polynomial regression models were successfully applied and the prediction ability of these models was tested with the use of current density obtained from the cyclic voltammograms of appropriate captan solutions.

View Article and Find Full Text PDF