Northern corn leaf blight (NCLB), caused by , is a major fungal disease affecting maize production in sub-Saharan Africa. Utilizing host plant resistance to mitigate yield losses associated with NCLB can serve as a cost-effective strategy. In this study, we conducted a high-resolution genome-wide association study (GWAS) in an association mapping panel and linkage mapping with three doubled haploid (DH) and three F populations of tropical maize.
View Article and Find Full Text PDFUnlabelled: As a fundamental pillar of food security in sub-Saharan Africa (SSA), ensuring seed security is critical to empowering farmers in cultivating food and livestock feed, thereby fostering income generation from agricultural outputs. Among the crops cultivated by smallholders, legumes have the potential to deliver multifaceted benefits. Legumes are nutrient-dense and enhance soil health through their nitrogen-fixing qualities.
View Article and Find Full Text PDFThe suboptimal productivity of maize systems in sub-Saharan Africa (SSA) is a pressing issue, with far-reaching implications for food security, nutrition, and livelihood sustainability within the affected smallholder farming communities. Dissecting the genetic basis of grain protein, starch and oil content can increase our understanding of the governing genetic systems, improve the efficacy of future breeding schemes and optimize the end-use quality of tropical maize. Here, four bi-parental maize populations were evaluated in field trials in Kenya and genotyped with mid-density single nucleotide polymorphism (SNP) markers.
View Article and Find Full Text PDFLow soil nitrogen levels, compounded by the high costs associated with nitrogen supplementation through fertilizers, significantly contribute to food insecurity, malnutrition, and rural poverty in maize-dependent smallholder communities of sub-Saharan Africa (SSA). The discovery of genomic regions associated with low nitrogen tolerance in maize can enhance selection efficiency and facilitate the development of improved varieties. To elucidate the genetic architecture of grain yield (GY) and its associated traits (anthesis-silking interval (ASI), anthesis date (AD), plant height (PH), ear position (EPO), and ear height (EH)) under different soil nitrogen regimes, four F maize populations were evaluated in Kenya and Zimbabwe.
View Article and Find Full Text PDFGenome-wide association study (GWAS) demonstrated that multiple genomic regions influence grain quality traits under nitrogen-starved soils. Using genomic prediction, genetic gains can be improved through selection for grain quality traits. Soils in sub-Saharan Africa are nitrogen deficient due to low fertilizer use and inadequate soil fertility management practices.
View Article and Find Full Text PDF