Publications by authors named "Noel M Gately"

This study investigates the effect of extrusion screw speed and carbon nanotube (CNT) concentration on the thermal, mechanical, and electromagnetic interference shielding effectiveness (EMI SE) properties of Polycarbonate (PC)/acrylonitrile-butadiene-styrene (ABS) and its polymer nanocomposites (PNCs) by means of design of experiments (DoE) approach. A masterbatch method was employed to obtain the best dispersion of the CNTs throughout the polymer matrix. This study evaluates the thermo-mechanical characterisation of the polymers and PNCs at varying screw speeds to assess filler matrix bonding.

View Article and Find Full Text PDF

Biodegradable polyesters are a popular choice for both packaging and medical device manufacture owing to their ability to break down into harmless components once they have completed their function. However, commonly used polyesters such as poly(hydroxybutyrate) (PHB), poly(lactic acid) (PLA), and polycaprolactone (PCL), while readily available and have a relatively low price compared to other biodegradable polyesters, do not meet the degradation profiles required for many applications. As such, this study aimed to determine if the mechanical and degradation properties of biodegradable polymers could be tailored by blending different polymers.

View Article and Find Full Text PDF

Hot melt extrusion offers an efficient way of increasing the solubility of a poorly soluble drug. Shellac has potential as a pharmaceutical matrix polymer that can be used in this extrusion process, with further advantages for use in enteric drug delivery systems. The rheological property of a material affects the extrusion process conditions.

View Article and Find Full Text PDF

Poly-l-lactic acid (PLLA) is one of the most common bioabsorbable materials in the medical device field. However, its use in load-bearing applications is limited due to its inferior mechanical properties when compared to many of the competing metal-based permanent and bioabsorbable materials. The objective of this study was to directly compare the influence of both annealing and biaxial expansion processes to improve the material properties of PLLA.

View Article and Find Full Text PDF

Biodegradable polymers play a crucial role in the medical device field, with a broad range of applications such as suturing, drug delivery, tissue engineering, scaffolding, orthopaedics, and fixation devices. Poly-l-lactic acid (PLLA) is one of the most commonly used and investigated biodegradable polymers. The objective of this study was to determine the influence low shear microbore extrusion exerts on the properties of high molecular weight PLLA for medical tubing applications.

View Article and Find Full Text PDF

Hot melt extrusion (HME) is considered an efficient technique in developing solid molecular dispersions, and has been demonstrated to provide sustained, modified and targeted drug delivery resulting in improved bioavailability. However, most commercial enteric or pH-responsive polymers are relatively difficult to process or have high Glass Transition Temperature (Tg) values, making their use with temperature-sensitive drugs, probiotics or biologics not viable. Shellac is a natural thermoplastic, and after a review of current literature on the pharmaceutical HME process, a possible gap in the knowledge of the use of shellac to produce dosage forms by means of HME was identified.

View Article and Find Full Text PDF