Cell cycle proteins play essential roles in regulating embryonic and adult neurogenesis in the mammalian brain. A key example is the Retinoblastoma protein (Rb) whose loss disrupts the whole neurogenic program during brain development, but only results in increased progenitor proliferation in the adult subventricular zone (SVZ) and compromised long-term neuronal survival in the adult olfactory bulb (OB). Whether this holds true of neurogenesis in the aged brain remains unknown.
View Article and Find Full Text PDFCurr Res Neurobiol
January 2023
Three decades following the introduction of the first Rb knockout (KO) mouse model, the role of this critical protein in regulating brain development during embryogenesis and beyond remains a major scientific interest. Rb is a tumor suppressor gene known as the master regulator of the G1/S checkpoint and control of cell cycle progression in stem and progenitor cells, but also their differentiated progeny. Here, we review the recent literature about the various Rb conditional Knockout (cKO) and inducible Knockout (iKO) models studied thus far, highlighting how findings should always be interpreted in light of the model and context under inquiry especially when studying the role of Rb in neuronal survival.
View Article and Find Full Text PDFLong-term maintenance of the adult neurogenic niche depends on proper regulation of entry and exit from quiescence. Neural stem cell (NSC) transition from quiescence to activation is a complex process requiring precise cell-cycle control coordinated with transcriptional and morphological changes. How NSC fate transitions in coordination with the cell-cycle machinery remains poorly understood.
View Article and Find Full Text PDFCLN3 disease is a fatal neurodegenerative disorder affecting children. Hallmarks include brain atrophy, accelerated neuronal apoptosis, and ceramide elevation. Treatment regimens are supportive, highlighting the importance of novel, disease-modifying drugs.
View Article and Find Full Text PDFTraumatic brain injury (TBI) has been recognized as one of the major public health issues that leads to devastating neurological disability. As a consequence of primary and secondary injury phases, neuronal loss following brain trauma leads to pathophysiological alterations on the molecular and cellular levels that severely impact the neuropsycho-behavioral and motor outcomes. Thus, to mitigate the neuropathological sequelae post-TBI such as cerebral edema, inflammation and neural degeneration, several neurotherapeutic options have been investigated including drug intervention, stem cell use and combinational therapies.
View Article and Find Full Text PDFAdult neurogenesis (AN) is an ongoing developmental process that generates newborn neurons in the olfactory bulb (OB) and the hippocampus (Hi) throughout life and significantly contributes to brain plasticity. Adult neural stem and progenitor cells (aNSPCs) are relatively limited in number and fate and are spatially restricted to the subventricular zone (SVZ) and the subgranular zone (SGZ). During AN, the distinct roles played by cell cycle proteins extend beyond cell cycle control and constitute key regulatory mechanisms involved in neuronal maturation and survival.
View Article and Find Full Text PDFIn mammals, hippocampal dentate gyrus granule cells (DGCs) constitute a particular neuronal population produced both during embryogenesis and adult life, and play key roles in neural plasticity and memory. However, the molecular mechanisms regulating neurogenesis in the dentate lineage throughout development and adulthood are still not well understood. The Retinoblastoma protein (RB), a transcriptional repressor primarily involved in cell cycle control and cell death, plays crucial roles during cortical development but its function in the formation and maintenance of DGCs remains unknown.
View Article and Find Full Text PDFThe Retinoblastoma protein, Rb, was shown to regulate distinct aspects of neurogenesis in the embryonic and adult brain besides its primary role in cell cycle control. It is still unknown, however, whether Rb is required for tissue morphogenesis and the establishment of synaptic connections between adjacent tissues during development. We have investigated here the role of Rb during development of the olfactory system (OS), which heavily relies on reciprocal interactions between the olfactory epithelium (OE) and the olfactory bulb (OB).
View Article and Find Full Text PDFTraumatic brain injury (TBI) is one of the leading causes of death and disabilities worldwide. It affects approximately 1.5 million people each year and is associated with severe post-TBI symptoms such as sensory and motor deficits.
View Article and Find Full Text PDFAdult neural stem cells (aNSCs) are relatively quiescent populations that give rise to distinct neuronal subtypes throughout life, yet, at a very low rate and restricted differentiation potential. Thus, identifying the molecular mechanisms that control their cellular expansion is critical for regeneration after brain injury. Loss of the Retinoblastoma protein, Rb, leads to several defects in cell cycle as well as neuronal differentiation and migration during brain development.
View Article and Find Full Text PDFUnlabelled: Cellular senescence, a form of cell-cycle arrest, is a tumor-suppressor mechanism triggered by multiple tumor-promoting insults, including oncogenic stress and DNA damage. The role of cyclin-dependent kinase 2 (CDK2) regulation has been evaluated in models of replicative senescence, but little is known regarding its role in other senescence settings. Using in vitro and in vivo models of DNA damage-and oncogene-induced cellular senescence, it was determined that activation of the tumor-suppressor protein p53 (TP53) resulted in repression of the CDK2 transcript that was dependent on intact RB.
View Article and Find Full Text PDFDuring brain morphogenesis, the mechanisms through which the cell cycle machinery integrates with differentiation signals remain elusive. Here we show that the Rb/E2F pathway regulates key aspects of differentiation and migration through direct control of the Dlx1 and Dlx2 homeodomain proteins, required for interneuron specification. Rb deficiency results in a dramatic reduction of Dlx1 and Dlx2 gene expression manifested by loss of interneuron subtypes and severe migration defects in the mouse brain.
View Article and Find Full Text PDFRegulation of region-specific neuronal differentiation and migration in the embryonic forebrain is a complex mechanism that involves a variety of transcription factors such as the Dlx genes. At least four cis-acting regulatory elements (CREs) are responsible for the Dlx transcriptional regulation in the subcortical telencephalon and the rostral diencephalon. These include I12b and URE2 in the Dlx1/2 bigene cluster, and, I56i and I56ii in the Dlx5/6 cluster.
View Article and Find Full Text PDFThe Retinoblastoma protein p107 regulates the neural precursor pool in both the developing and adult brain. As p107-deficient mice exhibit enhanced levels of Hes1, we questioned whether p107 regulates neural precursor self-renewal through the repression of Hes1. p107 represses transcription at the Hes1 promoter.
View Article and Find Full Text PDFDistinct subtypes of cortical GABAergic interneurons provide inhibitory signals that are indispensable for neural network function. The Dlx homeobox genes have a central role in regulating their development and function. We have characterized the activity of three cis-regulatory sequences involved in forebrain expression of vertebrate Dlx genes: upstream regulatory element 2 (URE2), I12b, and I56i.
View Article and Find Full Text PDFEstablishment of neuronal networks is an extremely complex process involving the interaction of a diversity of neuronal cells. During mammalian development, these highly organized networks are formed through the differentiation of multipotent neuronal progenitors into multiple neuronal cell lineages. In the developing forebrain of mammals, the combined function of the Dlx1, Dlx2, Dlx5 and Dlx6 homeobox genes is necessary for the differentiation of the GABAergic interneurons born in the ventricular and subventricular zones of the ventral telencephalon, as well as for the migration of these neurons to the hippocampus, cerebral cortex and olfactory bulbs.
View Article and Find Full Text PDFBackground: Linkage studies in autism have identified susceptibility loci on chromosomes 2q and 7q, regions containing the DLX1/2 and DLX5/6 bigene clusters. The DLX genes encode homeodomain transcription factors that control craniofacial patterning and differentiation and survival of forebrain inhibitory neurons. We investigated the role that sequence variants in DLX genes play in autism by in-depth resequencing of these genes in 161 autism probands from the AGRE collection.
View Article and Find Full Text PDFThe vertebrate Dlx genes, generally organized as tail-to-tail bigene clusters, are expressed in the branchial arch epithelium and mesenchyme with nested proximodistal expression implicating a code that underlies the fates of jaws. Little is known of the regulatory architecture that is responsible for Dlx gene expression in developing arches. We have identified two distinct cis-acting regulatory sequences, I12a and I56i, in the intergenic regions of the Dlx1/2 and Dlx5/6 clusters that act as enhancers in the arch mesenchyme.
View Article and Find Full Text PDFDlx homeobox genes of vertebrates are generally arranged as three bigene clusters on distinct chromosomes. The Dlx1/Dlx2, Dlx5/Dlx6, and Dlx3/Dlx7 clusters likely originate from duplications of an ancestral Dlx gene pair. Overlaps in expression are often observed between genes from the different clusters.
View Article and Find Full Text PDF