Bayesian inference methods are applied within a Bayesian hierarchical modeling framework to the problems of joint state and parameter estimation, and of state forecasting. We explore and demonstrate the ideas in the context of a simple nonlinear marine biogeochemical model. A novel approach is proposed to the formulation of the stochastic process model, in which ecophysiological properties of plankton communities are represented by autoregressive stochastic processes.
View Article and Find Full Text PDFAnalyses of ecological data should account for the uncertainty in the process(es) that generated the data. However, accounting for these uncertainties is a difficult task, since ecology is known for its complexity. Measurement and/or process errors are often the only sources of uncertainty modeled when addressing complex ecological problems, yet analyses should also account for uncertainty in sampling design, in model specification, in parameters governing the specified model, and in initial and boundary conditions.
View Article and Find Full Text PDFAn infectious disease typically spreads via contact between infected and susceptible individuals. Since the small-scale movements and contacts between people are generally not recorded, available data regarding infectious disease are often aggregations in space and time, yielding small-area counts of the number infected during successive, regular time intervals. In this paper, we develop a spatially descriptive, temporally dynamic hierarchical model to be fitted to such data.
View Article and Find Full Text PDF