Publications by authors named "Noel C Wortham"

The eukaryotic translation initiation factor eIF2B is a multi-subunit complex with a crucial role in the regulation of global protein synthesis in the cell. The complex comprises five subunits, termed α through ε in order of increasing size, arranged as a heterodecamer with two copies of each subunit. Regulation of the co-stoichiometric expression of the eIF2B subunits is crucial for the proper function and regulation of the eIF2B complex in cells.

View Article and Find Full Text PDF

The eukaryotic translation initiation factor (eIF) eIF2B is a key regulator of mRNA translation, being the guanine nt exchange factor (GEF) responsible for the recycling of the heterotrimeric G-protein, eIF2, which is required to allow translation initiation to occur. Unusually for a GEF, eIF2B is a multi-subunit protein, comprising five different subunits termed α through ε in order of increasing size. eIF2B is subject to tight regulation in the cell and may also serve additional functions.

View Article and Find Full Text PDF

Background: Leukoencephalopathy with Vanishing White Matter (VWM) is an autosomal recessive disorder caused by germline mutations in the genes EIF2B1-5, which encode the 5 subunits of the eukaryotic translation initiation factor eIF2B. To date, analysis of the biochemical effects of mutations in the EIF2B2-5 genes has been carried out, but no study has been performed on mutations in the EIF2B1 gene. This gene encodes eIF2Bα, the smallest subunit in eIF2B which has an important role in both the structure and regulation of the eIF2B complex.

View Article and Find Full Text PDF

Eukaryotic initiation factor 2B (eIF2B) is the guanine nucleotide exchange factor for eIF2 and a critical regulator of protein synthesis, (e.g., as part of the integrated stress response).

View Article and Find Full Text PDF

Eukaryotic initiation factor 2B (eIF2B) plays a key role in protein synthesis and in its control. It comprises five different subunits, α-ε, of which eIF2Bε contains the catalytic domain. Formation of the complete complex is crucial for full activity and proper control of eIF2B.

View Article and Find Full Text PDF

Autosomal recessive mutations in eukaryotic initiation factor 2B (eIF2B) cause leukoencephalopathy vanishing white matter with a wide clinical spectrum. eIF2B comprises five subunits (α-ε; genes EIF2B1, 2, 3, 4 and 5) and is the guanine nucleotide-exchange factor (GEF) for eIF2. It plays a key role in protein synthesis.

View Article and Find Full Text PDF

Somatic interstitial deletions of chromosome segment 7q22-q31 in uterine leiomyomas are a frequent event, thought to be indicative of a tumor suppressor gene in the region. Previous LOH and CGH studies have refined this region to 7q22.3-q31, although the target gene has not been identified.

View Article and Find Full Text PDF

Objective: To examine differences between sporadic and familial uterine leiomyomata related to expression of apoptosis-related proteins and tumor ultrastructure.

Design: Expression of apoptosis-related proteins was measured by immunohistochemistry. Tumor ultrastructure was evaluated by transmission electron microscopy.

View Article and Find Full Text PDF

Uterine fibroids are some of the most common tumours of females, but relatively little is known about their molecular basis. Several studies have suggested that deletions on chromosome 7q could have a role in fibroid formation. We analysed 165 sporadic uterine fibroids to define a small 3.

View Article and Find Full Text PDF

Dercum's disease (adiposis dolorosa, lipomatosis dolorosa morbus Dercum), is a rare disorder resulting in painful fatty deposits around the upper legs, trunk, and upper arms. The portrait painted of Dercum's disease is very complicated, with many other disorders seen associated with the disease. There are no clear pathological mechanisms known, although it is suspected that there is either a metabolic or autoimmune component involved.

View Article and Find Full Text PDF

It is well documented that disturbances in mitochondrial function are associated with rare childhood disorders and possibly with many common diseases of ageing, such as Parkinson's disease and dementia. There has also been increasing evidence linking mitochondrial dysfunction with tumorigenesis. Recently, heterozygous germline mutations in two enzymes of the Krebs tricarboxylic acid cycle (TCA cycle) have been shown to predispose individuals to tumours.

View Article and Find Full Text PDF