Proc Natl Acad Sci U S A
September 2024
Multidimensional solitons are prevalent in numerous research fields. In orientationally ordered soft matter system, three-dimensional director solitons exemplify the localized distortion of molecular orientation. However, their precise manipulation remains challenging due to unpredictable and uncontrolled generation.
View Article and Find Full Text PDFSolitons in nematic liquid crystals facilitate the rapid transport and sensing in microfluidic systems. Little is known about the elementary conditions needed to create solitons in nematic materials. In this study, we apply a combination of theory, computational simulations, and experiments to examine the formation and propagation of solitary waves, or "solitons", in nematic liquid crystals under the influence of an alternating current (AC) electric field.
View Article and Find Full Text PDFThe optical properties of liquid crystals serve as the basis for display, diagnostic, and sensing technologies. Such properties are generally controlled by relying on electric fields. In this work, we investigate the effects of microfluidic flows and acoustic fields on the molecular orientation and the corresponding optical response of nematic liquid crystals.
View Article and Find Full Text PDFSolitons in liquid crystals have generated considerable interest. Several hypotheses of varying complexity have been advanced to explain how they arise, but consensus has not emerged yet about the underlying forces responsible for their formation or their structure. In this work, we present a minimal model for solitons in achiral nematic liquid crystals, which reveals the key requirements needed to generate them in the absence of added charges.
View Article and Find Full Text PDFSolitons are highly confined, propagating waves that arise from nonlinear feedback in natural (e.g., shallow and confined waters) and engineered systems (e.
View Article and Find Full Text PDFAC electric fields cause three-dimensional orientational fluctuations (solitons) to form and rapidly propagate in confined films of liquid crystals (LCs), offering the basis of a new class of active soft matter (e.g., for accelerating mixing and transport processes in microscale chemical systems).
View Article and Find Full Text PDFTopological defects in active liquid crystals can be confined by introducing gradients of activity. Here, we examine the dynamical behavior of two defects confined by a sharp gradient of activity that separates an active circular region and a surrounding passive nematic material. Continuum simulations are used to explain how the interplay among energy injection into the system, hydrodynamic interactions, and frictional forces governs the dynamics of topologically required self-propelling +1/2 defects.
View Article and Find Full Text PDFLiquid crystals (LCs) are easily influenced by external interactions, particularly at interfaces. When rod-like LC molecules are confined to spherical droplets, they experience a competition between interfacial tension and elastic deformations. The configuration of LCs inside a droplet can be controlled using surfactants that influence the interfacial orientation of the LC molecules in the oil-phase of an oil in water emulsion.
View Article and Find Full Text PDFWe modeled the experimentally observed self-assembly of nanoparticles (NPs) into shells with diameters up to 10 μm, via segregation from growing nematic domains. Using field-based Monte Carlo simulations, we found the equilibrium configurations of the system by minimizing a free-energy functional that includes effects of excluded-volume interactions among NPs, orientational elasticity, and the isotropic-nematic phase-transition energy. We developed a Gaussian-profile approximation for the liquid crystal (LC) order-parameter field that provides accurate analytical values for the free energy of LC droplets and the associated microshells.
View Article and Find Full Text PDF