A conventional performance metric for electrocatalysts that promote the oxygen evolution reaction (OER) is the current density at a given overpotential. However, the assumption that increased current density at lower overpotentials indicates superior catalyst design is precarious for OER catalysts in the working environment, as the crystalline lattice is prone to deconstruction and amorphization, thus greatly increasing the concentration of catalytic active sites. We show this to be the case for La incorporation into CoO.
View Article and Find Full Text PDFThe intensity of respiratory treatment in acute respiratory distress syndrome (ARDS) is traditionally adjusted based on oxygenation severity, as defined by the mild, moderate, and severe Berlin classifications. However, ventilator-induced lung injury (VILI) is primarily determined by ventilator settings, namely tidal volume, respiratory rate, and positive end-expiratory pressure (PEEP). All these variables, along with respiratory elastance, are included in the concept of mechanical power.
View Article and Find Full Text PDFBackground: Ventilator-induced lung injury (VILI) is one of the side effects of mechanical ventilation during ARDS; a prerequisite for averting it is the quantification of its risk factors associated with a given ventilatory setting. Many clinical variables have been proposed as predictors of VILI, of which driving pressure is the most widely used. In this study, we compared the performance of driving pressure, four times the driving pressure added to respiratory rate (4DPRR) and mechanical power ratio.
View Article and Find Full Text PDFPurpose: The selection and intensity of respiratory support for ARDS are guided by PaO/FiO. However, ventilator-induced lung injury (VILI) is linked to respiratory mechanics and ventilator settings. We explored whether the VILI risk is related to ARDS severity based on oxygenation.
View Article and Find Full Text PDFRationale: The pathophysiological relationship between fluid administration, fluid balance, and mechanical ventilation in the development of lung injury is unclear.
Objectives: To quantify the relative contribution of mechanical power and fluid balance in the development of lung injury.
Methods: Thirty-nine healthy female pigs, divided into four groups, were ventilated for 48 hours with high (~18J/min) or low (~6J/min) mechanical power; and high (~4L) or low (~1L) targeted fluid balance.
Background: Shared biological factors may play a role in both the cognitive deficits and the increased prevalence of metabolic syndrome observed in individuals with Schizophrenia (SCZ). These factors could entail disturbances in tryptophan (Trp) to both melatonin (MLT) and kynurenine (Kyn) metabolic pathways, as well as inflammation and alterations in the gut microbiome composition.
Methods: The present research project aims to investigate this hypothesis by recruiting 170 SCZ patients from two different recruitment sites, assessing their cognitive functions and screening for the presence of metabolic syndrome.
Ribonucleotide reductases (RNRs) reduce ribonucleotides to deoxyribonucleotides using radical-based chemistry. For class Ia RNRs, the radical species is stored in a separate subunit (β2) from the subunit housing the active site (α2), requiring the formation of a short-lived α2β2 complex and long-range radical transfer (RT). RT occurs via proton-coupled electron transfer (PCET) over a long distance (~32-Å) and involves the formation and decay of multiple amino acid radical species.
View Article and Find Full Text PDFRibonucleotide reductases (RNRs) reduce ribonucleotides to deoxyribonucleotides using radical-based chemistry. For class Ia RNRs, the radical species is stored in a separate subunit (β2) from the subunit housing the active site (α2), requiring the formation of a short-lived α2β2 complex and long-range radical transfer (RT). RT occurs via proton-coupled electron transfer (PCET) over a long distance (~32-Å) and involves the formation and decay of multiple amino acid radical species.
View Article and Find Full Text PDFOxygenation of hydrocarbons offers versatile catalytic routes to more valuable compounds, such as alcohols, aldehydes, and ketones. Despite the importance of monometallic copper-oxygen species as hydroxylating agents in biology, few synthetic model compounds are known to react with hydrocarbons, owing to high C-H bond dissociation energies. To overcome this challenge, the photoredox chemistry of monometallic copper (pyrazolyl)borate complexes coordinated by chlorate has been explored in the presence of C-C alkanes with BDEs ≥ 93 kcal/mol.
View Article and Find Full Text PDFBackground: In the last decade, the kynurenine pathway (KP) has gained attention in the pathogenesis of cognitive impairment in schizophrenia being at the croassroad between neuroinflammation and glutamatergic and cholinergic neurotransmission. However, clinical findings are scarse and conflicting, and the specific contributions of these two systems to the neurobiology of cognitive symptoms are far from being elucidated. Furthermore, little is known about the molecular underpinnings of non-pharmacological interventions for cognitive improvement, including rehabilitation strategies.
View Article and Find Full Text PDFNonvesicular lipid trafficking pathways are an important process in every domain of life. The mechanisms of these processes are poorly understood in part due to the difficulty in kinetic characterization. One important class of glycolipids, lipopolysaccharides (LPS), are the primary lipidic component of the outer membrane of Gram-negative bacteria.
View Article and Find Full Text PDFRibonucleotide reductases (RNRs) are essential enzymes that catalyze the de novo transformation of nucleoside 5'-di(tri)phosphates [ND(T)Ps, where N is A, U, C, or G] to their corresponding deoxynucleotides. Despite the diversity of factors required for function and the low sequence conservation across RNRs, a unifying apparatus consolidating RNR activity is explored. We combine aspects of the protein subunit simplicity of class II RNR with a modified version of class la photoRNRs that initiate radical chemistry with light to engineer a mimic of a class II enzyme.
View Article and Find Full Text PDFBackground: Bloodstream infections (BSIs) by Gram-negative pathogens play a major role in intensive care patients, both in terms of prevalence and severity, especially if multi-drug resistant pathogens are involved. Early appropriate antibiotic therapy is therefore a cornerstone in the management of these patients, and growing evidence shows that implementation of a multidisciplinary team may improve patients' outcomes. Our aim was to evaluate the clinical and microbiological impact of the application of a multidisciplinary team on critically ill patients.
View Article and Find Full Text PDFThe translocation of the testis-determining factor, the SRY gene, from the Y to the X chromosome is a rare event that causes abnormalities in gonadal development. In all cases of males and females carrying this translocation, disorder of sex development is reported. In our study, we described a peculiar pedigree with the first evidence of four healthy females from three generations who are carriers of the newly identified t(X;Y)(q28;p11.
View Article and Find Full Text PDFEur Arch Psychiatry Clin Neurosci
September 2024
Treatment-Resistant Schizophrenia (TRS) represents a main clinical issue, associated with worse psychopathological outcomes, a more disrupted neurobiological substrate, and poorer neurocognitive performance across several domains, especially in verbal abilities. If cognitive impairment is a major determinant of patients' functional outcomes and quality of life, targeting cognitive dysfunction becomes even more crucial in TRS patients in order to minimize cognitive and functional deterioration. However, although Cognitive Remediation Therapy (CRT) represents the best available tool to treat cognitive dysfunction in schizophrenia, specific evidence of its efficacy in TRS is lacking.
View Article and Find Full Text PDFMolecular Ag(II) complexes are superoxidizing photoredox catalysts capable of generating radicals from redox-reticent substrates. In this work, we exploited the electrophilicity of Ag(II) centers in [Ag(bpy)(TFA)][OTf] and Ag(bpy)(TFA) (bpy, 2,2'-bipyridine; OTf, CFSO) complexes to activate trifluoroacetate (TFA) by visible light-induced homolysis. The resulting trifluoromethyl radicals may react with a variety of arenes to forge C(sp)-CF bonds.
View Article and Find Full Text PDFThe triplet excited states of ketones are found to effect selective H-atom abstraction from strong amide N-H bonds in the presence of weaker C-H bonds through a proton-coupled electron transfer (PCET) pathway. This chemoselectivity, which results from differences in ionization energies (IEs) between functional groups rather than bond dissociation energies (BDEs) arises from the asynchronicity between electron and proton transfer in the PCET process. We show how this strategy may be leveraged to achieve the intramolecular anti-Markovnikov hydroamidation of alkenes to form lactams using camphorquinone as an inexpensive and sustainable photocatalyst.
View Article and Find Full Text PDFSeparation of carbon dioxide (CO) from point sources or directly from the atmosphere can contribute crucially to climate change mitigation plans in the coming decades. A fundamental practical limitation for the current strategies is the considerable energy cost required to regenerate the sorbent and release the captured CO for storage or utilization. A directly photochemically driven system that demonstrates efficient passive capture and on-demand CO release triggered by sunlight as the sole external stimulus would provide an attractive alternative.
View Article and Find Full Text PDFElectrochemical approaches to form C(sp )-C(sp ) bonds have focused on coupling C(sp ) electrophiles that form stabilized carbon-centered radicals upon reduction or oxidation. Whereas alkyl bromides are desirable C(sp ) coupling partners owing to their availability and cost-effectiveness, their tendency to undergo radical-radical homocoupling makes them challenging substrates for electroreductive cross-coupling. Herein, we disclose a metal-free regioselective cross-coupling of 1,4-dicyanobenzene, a useful precursor to aromatic nitriles, and alkyl bromides.
View Article and Find Full Text PDFCarbonate formation presents a major challenge to energy storage applications based on low-temperature CO electrolysis and recyclable metal-air batteries. While direct electrochemical oxidation of (bi)carbonate represents a straightforward route for carbonate management, knowledge of the feasibility and mechanisms of direct oxidation is presently lacking. Herein, we report the isolation and characterization of the bis(triphenylphosphine)iminium salts of bicarbonate and peroxybicarbonate, thus enabling the examination of their oxidation chemistry.
View Article and Find Full Text PDFDisulfides are involved in a broad range of radical-based synthetic organic and biochemical transformations. In particular, the reduction of a disulfide to the corresponding radical anion, followed by S-S bond cleavage to yield a thiyl radical and a thiolate anion plays critical roles in radical-based photoredox transformations and the disulfide radical anion in conjunction with a proton donor, mediates the enzymatic synthesis of deoxynucleotides from nucleotides within the active site of the enzyme, ribonucleotide reductase (RNR). To gain fundamental thermodynamic insight into these reactions, we have performed experimental measurements to furnish the transfer coefficient from which the standard (RSSR/RSSR˙) reduction potential has been determined for a homologous series of disulfides.
View Article and Find Full Text PDFWhereas the emphasis of water splitting is typically on hydrogen generation, there is value in the oxygen produced, especially in the undersea environment and for medicinal applications in the developing world. The generation of pure and breathable oxygen from abundant and accessible sources of water, such as brine and seawater, is challenging owing to the prevalence of the competing halide oxidation reaction to produce halogen and hypohalous acids. We show here that pure O may be generated from briny water by using an oxygen evolution catalyst with an overlayer that fulfills the criteria of (i) possessing a point of zero charge that results in halide anion rejection and (ii) promoting the disproportionation of hypohalous acids.
View Article and Find Full Text PDFRibonucleotide reductases (RNRs) play an essential role in the conversion of nucleotides to deoxynucleotides in all organisms. The class Ia RNR requires two homodimeric subunits, α and β. The active form is an asymmetric αα'ββ' complex.
View Article and Find Full Text PDF