Recently, several non-animal approaches contributing to the identification of skin sensitisation hazard have been introduced. Their validation and acceptance has largely been directed towards regulatory classification. Considering the driving force for replacement of in vivo tests centred on cosmetics, it is reasonable to ask how well the new approaches perform in this respect.
View Article and Find Full Text PDFSkin sensitization is an important toxicological endpoint in the safety assessment of chemicals and cosmetic ingredients. Driven by ethical considerations and European Union (EU) legislation, its assessment has progressed from the reliance on traditional animal models to the use of non-animal test methods. It is generally accepted that the assessment of skin sensitization requires the integration of various non-animal test methods in defined approaches (DAs), to cover the mechanistic key events of the adverse outcomes pathway (AOP) (OECD, 2014).
View Article and Find Full Text PDFObjective: This study aimed to establish a predictive in vitro method for assessing the photoprotective properties of sunscreens using a reconstructed full-thickness skin model.
Materials And Methods: A full-thickness skin model reconstructed with human fibroblasts and keratinocytes isolated from Chinese skin was exposed to daily UV radiation (DUVR). We examined the transcriptomic response, identifying genes for which expression was modulated by DUVR in a dose-dependent manner.
In an effort to address a major challenge in chemical safety assessment, alternative approaches for characterizing systemic effect levels, a predictive model was developed. Systemic effect levels were curated from ToxRefDB, HESS-DB and COSMOS-DB from numerous study types totaling 4379 in vivo studies for 1247 chemicals. Observed systemic effects in mammalian models are a complex function of chemical dynamics, kinetics, and inter- and intra-individual variability.
View Article and Find Full Text PDFIn this work the ANOVA-PCA method is applied to a MIR spectroscopy dataset of carrageenan in order to evaluate which of the factors within its fixed effects experimental design are significant in relation to the residual error. The factors defined in the experimental design are concentration (1% and 2%), temperature (30, 40, 45, 50, and 60 degrees C), day (1 and 2) and sample (20 samples, 3 repetitions). The two factors, concentration and temperature, were considered as significant and the main features related with its physico-chemical properties were identified.
View Article and Find Full Text PDFComprehensive two-dimensional gas chromatography (GC x GC) is now recognized as the preferred technique for the detailed analysis and characterization of complex mixtures of volatile compounds. However, for comparison purposes, taking into account all the information contained in the chromatogram is far from trivial. In this paper, it is shown that the combination of peak alignment by dynamic time warping and multivariate analysis facilitated the comparison of complex chromatograms of tobacco extracts.
View Article and Find Full Text PDF