Publications by authors named "Nobuyuki Nukina"

Golli-myelin basic proteins, encoded by the myelin basic protein gene, are widely expressed in neurons and oligodendrocytes in the central nervous system. Further, prior research has shown that Golli-myelin basic protein is necessary for myelination and neuronal maturation during central nervous system development. In this study, we established Golli-myelin basic protein-floxed mice to elucidate the cell-type-specific effects of Golli-myelin basic protein knockout through the generation of conditional knockout mice (Golli-myelin basic proteins; E3CreN), in which Golli-myelin basic proteins were specifically deleted in cerebellar granule neurons, where Golli-myelin basic proteins are expressed abundantly in wild-type mice.

View Article and Find Full Text PDF

In contrast to stage-specific transcription factors, the role of ubiquitous transcription factors in neuronal development remains a matter of scrutiny. Here, we demonstrated that a ubiquitous factor NF-Y is essential for neural progenitor maintenance during brain morphogenesis. Deletion of the NF-YA subunit in neural progenitors by using nestin-cre transgene in mice resulted in significant abnormalities in brain morphology, including a thinner cerebral cortex and loss of striatum during embryogenesis.

View Article and Find Full Text PDF

Abnormal α-synuclein aggregation is a key pathological feature of a group of neurodegenerative diseases known as synucleinopathies, which include Parkinson's disease (PD), dementia with Lewy bodies and multiple system atrophy (MSA). The pathogenic β-sheet seed conformation of α-synuclein is found in various tissues, suggesting potential as a biomarker, but few studies have been able to reliably detect these seeds in serum samples. In this study, we developed a modified assay system, called immunoprecipitation-based real-time quaking-induced conversion (IP/RT-QuIC), which enables the detection of pathogenic α-synuclein seeds in the serum of individuals with synucleinopathies.

View Article and Find Full Text PDF

Synucleinopathies are neurodegenerative disorders including Parkinson disease (PD), dementia with Lewy body (DLB), and multiple system atrophy (MSA) that involve deposits of the protein alpha-synuclein (α-syn) in the brain. The inoculation of α-syn aggregates derived from synucleinopathy or preformed fibrils (PFF) formed in vitro induces misfolding and deposition of endogenous α-syn. This is referred to as prion-like transmission, and the mechanism is still unknown.

View Article and Find Full Text PDF

Intrinsically disordered proteins (IDPs) have been in the spotlight for their unique properties, such as their lack of secondary structures and low sequence complexity. Alpha-synuclein and tau are representative disease-related IDPs with low complexity regions in their sequences, accumulating in the brains of patients with Parkinson disease and Alzheimer disease, respectively. Their heat resistance in particular was what attracted our attention.

View Article and Find Full Text PDF

Amyloid fibril deposits are a main source of pathology in neurodegenerative diseases. Normal proteins such as tau, alpha-synuclein, TDP-43 and others could form specific conformational fibrils called amyloid, which deposited in the brains of neurodegenerative diseases. Although the pathological roles of amyloids in cell death have been discussed a lot, their other functions have not been investigated well.

View Article and Find Full Text PDF

Neuronal intranuclear inclusion disease (NIID) is a neurodegenerative disorder, characterized by the presence of eosinophilic inclusions (NIIs) within nuclei of central and peripheral nervous system cells. This study aims to identify the components of NIIs, which have been difficult to analyze directly due to their insolubility. In order to establish a method to directly identify the components of NIIs, we first analyzed the huntingtin inclusion-rich fraction obtained from the brains of Huntington disease model mice.

View Article and Find Full Text PDF

Unmyelinated fibers in the central nervous system are known to exist in hippocampal mossy fibers, cerebellar parallel fibers and striatal projection fibers. Previously, we and others reported diffuse distribution of Nav1.2, a voltage-gated sodium channel α-subunit encoded by the SCN2A gene, on unmyelinated striatal projection fibers.

View Article and Find Full Text PDF

Nearly twenty years ago a mutation in the VAPB gene, resulting in a proline to serine substitution (p.P56S), was identified as the cause of a rare, slowly progressing, familial form of the motor neuron degenerative disease Amyotrophic Lateral Sclerosis (ALS). Since then, progress in unravelling the mechanistic basis of this mutation has proceeded in parallel with research on the VAP proteins and on their role in establishing membrane contact sites between the ER and other organelles.

View Article and Find Full Text PDF

Synucleinopathies are neurodegenerative diseases that are associated with the misfolding and aggregation of α-synuclein (αSyn). They include Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. In each disease, it has been proposed that aggregates of αSyn represent different conformational strains of αSyn, leading to self-propagation and spreading from cell to cell.

View Article and Find Full Text PDF
Article Synopsis
  • In 2008, guidelines were established for researching autophagy, which has since gained significant interest and new technologies, necessitating regular updates to monitoring methods across various organisms.
  • The new guidelines emphasize selecting appropriate techniques to evaluate autophagy while noting that no single method suits all situations; thus, a combination of methods is encouraged.
  • The document highlights that key proteins involved in autophagy also impact other cellular processes, suggesting genetic studies should focus on multiple autophagy-related genes to fully understand these pathways.
View Article and Find Full Text PDF

The pathological form of a-synuclein (a-syn) is transmitted through neural circuits in the brains of Parkinson disease (PD) patients and amplifies misfolded a-syn, further forming intracellular deposits. However, the details of a-syn pre-formed fibrils (PFFs) transmission in vivo have not been fully elucidated. By inoculating Quantum dots (QD)-labeled a-syn PFFs (QD-a-syn PFFs) into the unilateral striatum, we detected QD-a-syn PFFs in brain homogenates obtained from the ipsilateral and contralateral sides of the inoculated site and further obtained QD-a-syn PFFs enriched-particles with fluorescence-activated organelle sorting.

View Article and Find Full Text PDF

A heterotrimeric transcription factor NF-Y is crucial for cell-cycle progression in various types of cells. In contrast, studies using NF-YA knockout mice have unveiled its essential role in endoplasmic reticulum (ER) homeostasis in neuronal cells. However, whether NF-Y modulates a different transcriptome to mediate distinct cellular functions remains obscure.

View Article and Find Full Text PDF

Genetic variations of TREM2 have been implicated as a risk factor of Alzheimer's disease (AD). Recent studies suggest that the loss of TREM2 function compromises microglial responses to the accumulation of amyloid beta. Previously, we found that exon 3 of TREM2 is an alternative exon whose skipping leads to a reduction in full-length TREM2 protein by inducing nonsense-mediated mRNA decay.

View Article and Find Full Text PDF

Huntington disease (HD) is a neurodegenerative disorder caused by expanded CAG repeats in the gene. Results from previous studies have suggested that transcriptional dysregulation is one of the key mechanisms underlying striatal medium spiny neuron (MSN) degeneration in HD. However, some of the critical genes involved in HD etiology or pathology could be masked in a common expression profiling assay because of contamination with non-MSN cells.

View Article and Find Full Text PDF

An ER transmembrane protein, vesicle-associated membrane protein-associated protein B (VAPB), binds to several organelle-resident membrane proteins to mediate ER-organelle tethering. Mutation in amyotrophic lateral sclerosis (ALS) induces protein misfolding and aggregation, leading to ER disorganization. Gain or loss of function is suggested for VAPB mutation, however comprehensive study focusing on VAPB-ER domain has yet been performed.

View Article and Find Full Text PDF

Many pathological proteins related to neurodegenerative diseases are misfolded, aggregating to form amyloid fibrils during pathogenesis. One of the pathological proteins, alpha-synuclein (α-syn), accumulates in the brains of Parkinson disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA), which are designated as synucleinopathies. Recently, structural properties of abnormal accumulated proteins are suggested to determine the disease phenotype.

View Article and Find Full Text PDF

Synucleinopathies comprise a diverse group of neurodegenerative diseases including Parkinson's disease (PD), dementia with Lewy bodies, and multiple system atrophy. These share a common pathological feature, the deposition of alpha-synuclein (a-syn) in neurons or oligodendroglia. A-syn is highly conserved in vertebrates, but the primary sequence of mouse a-syn differs from that of human at seven positions.

View Article and Find Full Text PDF

Alpha-synuclein (a-syn) aggregation in brain is implicated in several synucleinopathies, including Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). Until date, at least six disease-associated mutations in a-syn (namely A30P, E46K, H50Q, G51D, A53T, and A53E) are known to cause dominantly inherited familial forms of synucleinopathies. Previous studies using recombinant proteins have reported that a subset of disease-associated mutants show higher aggregation propensities and form spectroscopically distinguishable aggregates compared to wild-type (WT).

View Article and Find Full Text PDF

Huntington Disease (HD) is a neurodegenerative disorder caused by expanded CAG repeats in the exon1 of huntingtin gene (HTT). The mutant HTT affects the transcriptional profile of neurons by disrupting the activities of transcriptional machinery and alters expression of many genes. In this study, we identified dysregulated non-coding RNAs (ncRNAs) in medium spiny neurons of 4-week-old HD model mouse.

View Article and Find Full Text PDF

Accumulating evidence suggests that the lesions of Parkinson's disease (PD) expand due to transneuronal spreading of fibrils composed of misfolded alpha-synuclein (a-syn), over the course of 5-10 years. However, the precise mechanisms and the processes underlying the spread of these fibril seeds have not been clarified in vivo. Here, we investigated the speed of a-syn transmission, which has not been a focus of previous a-syn transmission experiments, and whether a-syn pathologies spread in a neural circuit-dependent manner in the mouse brain.

View Article and Find Full Text PDF

Although the aggregation of amyloid-β peptide (Aβ) clearly plays a central role in the pathogenesis of Alzheimer's disease (AD), endosomal traffic dysfunction is considered to precede Aβ aggregation and trigger AD pathogenesis. A body of evidence suggests that the β-carboxyl-terminal fragment (βCTF) of amyloid-β precursor protein (APP), which is the direct precursor of Aβ, accumulates in endosomes and causes vesicular traffic impairment. However, the mechanism underlying this impairment remains unclear.

View Article and Find Full Text PDF

Accumulation of ubiquitinated protein aggregates is a common pathology associated with a number of neurodegenerative diseases and selective autophagy plays a critical role in their elimination. Although aging-related decreases in protein degradation properties may enhance protein aggregation, it remains unclear whether proteasome dysfunction is indispensable for ubiquitinated-protein aggregation in neurodegenerative diseases. Here, we show that N-oleoyl-dopamine and N-arachidonyl-dopamine, which are endogenous brain substances and belong to the N-acyldopamine (AcylDA) family, generate cellular inclusions through aggresome formation without proteasome inhibition.

View Article and Find Full Text PDF

The endoplasmic reticulum (ER) is a morphologically dynamic organelle containing different membrane subdomains with distinct cellular functions. Numerous observations have revealed that ER stress response induced by disturbed ER homeostasis is linked to various neurological/neurodegenerative disorders. In contrast, recent findings unveil that ER structural derangements are linked to the progression of several neurological diseases.

View Article and Find Full Text PDF

Voltage-gated sodium channels (VGSCs) are transmembrane proteins required for the generation of action potentials in excitable cells and essential for propagating electrical impulses along nerve cells. VGSCs are complexes of a pore-forming α subunit and auxiliary β subunits, designated as β1/β1B-β4 (encoded by respectively), which also function in cell-cell adhesion. We previously reported the structural basis for the homophilic interaction of the β4 subunit, which contributes to its adhesive function.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: