Cytochromes b561, novel transmembrane electron transport proteins residing in eukaryotic cells, have a number of common features including six transmembrane α-helices and two heme ligation sites. Our recent studies on recombinant Zea mays cytochrome b561 suggested that concerted proton/electron transfer mechanism was functioning in plant cytochromes b561 as well and that conserved Lys(83) on a cytosolic loop had important roles for ascorbate-binding and a succeeding electron transfer. In the present study, we conducted site-directed mutagenesis analyses on conserved Arg(72) and Tyr(71).
View Article and Find Full Text PDFCytochromes b(561), a novel class of transmembrane electron transport proteins residing in a large variety of eukaryotic cells, have a number of common structural features including six hydrophobic transmembrane alpha-helices and two heme ligation sites. We found that recombinant Zea mays cytochrome b(561) obtained by a heterologous expression system using yeast Pichia pastoris cells could utilize the ascorbate/mondehydroascorbate radical as a physiological electron donor/acceptor. We found further that a concerted proton/electron transfer mechanism might be operative in Z.
View Article and Find Full Text PDFCytochromes b(561) constitute a novel class of proteins in eukaryotic cells with a number of highly relevant common features including six transmembrane alpha-helices and two haem groups. Of particular interest is the presence of a large number of plant homologues having putative ascorbate- and monodehydroascorbate radical-binding sites. We conducted a diethylpyrocarbonate-modification study employing Zea mays cytochrome b(561) heterologously expressed in Pichia pastoris cells.
View Article and Find Full Text PDFA genetically engineered porcine myoglobin triple mutant (H64V/V68H/H93A) (VHA-Mb) contains 6 non-axial His residues (His24, His36, His48, His81, His82, and His119) besides two candidate axial His residues (His68 and His97). Although previous resonance Raman study on the ferric VHA-Mb were not conclusive for its coordination structure, present EPR parameters of the ferric VHA-Mb were consistent with bis-imidazole coordination of His68/His97. We further investigated the reactivity of these possible His ligands with diethylpyrocarbonate (DEPC) to clarify the coordination structure and their protonation states in ferric form.
View Article and Find Full Text PDFCytochromes b(561) are a family of transmembrane proteins found in most eukaryotic cells and contain two haem b prosthetic groups per molecule being coordinated with four His residues from four different transmembrane alpha-helices. Although cytochromes b(561) residing in the chromaffin vesicles has long been known to have a role for a neuroendocrine-specific transmembrane electron transfer from extravesicular ascorbate to intravesicular monodehydroascorbate radical to regenerate ascorbate, newly found members were apparently lacking in the sequence for putative ascorbate-binding site but exhibiting a transmembrane ferrireductase activity. We propose that cytochrome b(561) has a specific mechanism to facilitate the concerted proton/electron transfer from ascorbate by exploiting a cycle of deprotonated and protonated states of the N(delta1) atom of the axial His residue at the extravesicular haem center, as an initial step of the transmembrane electron transfer.
View Article and Find Full Text PDFWe investigated the reactivity of heme-coordinating imidazole with diethylpyrocarbonate using a soluble domain of cytochrome b(5). Analyses with various spectroscopic methods including MALDI-TOF-MS indicated that two axial His residues (His44 and His68) of cytochrome b(5) were protected from the modification by several factors, i.e.
View Article and Find Full Text PDFCytochrome b561 family was characterized by the presence of "b561 core domain" that forms a transmembrane four helix bundle containing four totally conserved His residues, which might coordinate two heme b groups. We conducted BLAST and PSI-BLAST searches to obtain insights on structure and functions of this protein family. Analyses with CLUSTAL W on b561 sequences from various organisms showed that the members could be classified into 7 subfamilies based on characteristic motifs; groups A (animals/neuroendocrine), B (plants), C (insects), D (fungi), E (animals/TSF), F (plants+DoH), and G (SDR2).
View Article and Find Full Text PDF