Purpose: To investigate the dynamics of the healing process after therapeutic subthreshold micropulse laser (SMPL) for diabetic macular edema (DME) using polarization-sensitive optical coherence tomography (PS-OCT).
Methods: Patients with treatment-native or previously-treated DME were prospectively imaged using PS-OCT at baseline, 1, 2, 3, and 6 months. The following outcomes were evaluated: changes in the entropy value per unit area (pixel2) in the retinal pigment epithelium (RPE) on the B-scan image; changes in the entropy value in each stratified layer (retina, RPE, choroid) based on the ETDRS grid circle overlaid with en face entropy mapping, not only the whole ETDRS grid area but also a sector irradiated by the SMPL; and the relationship between edema reduction and entropy changes.
Non-vascularized pigment epithelial detachments (PED) are usually associated with dry age-related macular degeneration (AMD). In this study, we aimed to investigate the correlation between visual function and morphologic parameters. Seventeen eyes of eleven patients with non-vascularized AMD were enrolled.
View Article and Find Full Text PDFPurpose: To investigate the three-dimensional distribution and associating demographic factors of depolarization, using polarization-sensitive optical coherence tomography (PS-OCT), to evaluate melanin pigmentation in the retinal pigment epithelium (RPE) and choroid in healthy eyes.
Methods: In total, 39 unaffected healthy eyes of 39 subjects were examined using a PS-OCT clinical prototype. The degree of depolarization, expressed as the polarimetric entropy, was assessed in the RPE, the superficial and the total choroid layer, especially in the center, the inner, or the outer areas centered at the fovea.
Imaging of melanin in the eye is important as the melanin is structurally associated with some ocular diseases, such as age-related macular degeneration. Although optical coherence tomography (OCT) cannot distinguish tissues containing the melanin from other tissues intrinsically, polarization-sensitive OCT (PS-OCT) can detect the melanin through spatial depolarization of the backscattered light from the melanin granules. Entropy is one of the depolarization metrics that can be used to detect malanin granules in PS-OCT and valuable quantitative information on ocular tissue abnormalities can be retrived by correlating entropy with the melanin concentration.
View Article and Find Full Text PDFPurpose: To evaluate cases with a retinal pigment epithelium (RPE) aperture using polarization-sensitive optical coherence tomography (PS-OCT).
Study Design: Retrospective consecutive case series.
Methods: A retrospective study that included three eyes (three patients) with RPE aperture and age-related macular degeneration (AMD) evaluated at the Macular Clinic in Tokyo University Hospital.