The stereoselective activation of alkanes constitutes a long-standing and grand challenge for chemistry. Although metal-containing enzymes oxidize alkanes with remarkable ease and selectivity, chemical approaches have largely been limited to transition metal-based catalytic carbon-hydrogen functionalizations. Alkanes can be protonated to form pentacoordinated carbonium ions and fragmented into smaller hydrocarbons in the presence of strong Brønsted acids.
View Article and Find Full Text PDFElectron-rich heteroaromatic imidodiphosphorimidates (IDPis) catalyze the asymmetric Pictet-Spengler reaction of -carbamoyl-β-arylethylamines with high stereochemical precision. This particular class of catalysts furthermore provides a vital rate enhancement compared to related Brønsted acids. Here we present experimental studies on the underlying reaction kinetics that shed light on the specific origins of rate acceleration.
View Article and Find Full Text PDFA strong and confined Brønsted acid catalyzed enantioselective cyclization of bis(methallyl)silanes provides enantioenriched Si-stereogenic silacycles. High enantioselectivities of up to 96.5:3.
View Article and Find Full Text PDFAsymmetric catalysis is an advanced area of chemical synthesis, but the handling of abundantly available, purely aliphatic hydrocarbons has proven to be challenging. Typically, heteroatoms or aromatic substructures are required in the substrates and reagents to facilitate an efficient interaction with the chiral catalyst. Confined acids have recently been introduced as tools for homogenous asymmetric catalysis, specifically to enable the processing of small unbiased substrates.
View Article and Find Full Text PDFMachine learning has permeated all fields of research, including chemistry, and is now an integral part of the design of novel compounds with desired properties. In the field of asymmetric catalysis, the preference still lies with models based on a physical understanding of the catalysis phenomenon and the electronic and steric properties of catalysts. However, such models require quantum chemical calculations and are thus limited by their computational cost.
View Article and Find Full Text PDFDespite recent advancements in the development of catalytic asymmetric electrophile induced lactonization reactions of olefinic carboxylic acids, the archetypical hydrolactonization has long remained an unsolved and well-recognized challenge. Here, we report the realization of a catalytic asymmetric hydrolactonization using a confined imidodiphosphorimidate (IDPi) Brønsted acid catalyst. The method is operationally simple, scalable, and compatible with a wide variety of substrates.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
March 2023
Catalyst optimization processes typically rely on inductive and qualitative assumptions of chemists based on screening data. While machine learning models using molecular properties or calculated 3D structures enable quantitative data evaluation, costly quantum chemical calculations are often required. In contrast, readily available binary fingerprint descriptors are time- and cost-efficient, but their predictive performance remains insufficient.
View Article and Find Full Text PDFFunctionalized enantiopure organosilanes are important building blocks with applications in various fields of chemistry; nevertheless, asymmetric synthetic methods for their preparation are rare. Here we report the first organocatalytic enantioselective synthesis of tertiary silyl ethers possessing "central chirality" on silicon. The reaction proceeds via a desymmetrizing carbon-carbon bond forming silicon-hydrogen exchange reaction of symmetrical bis(methallyl)silanes with phenols using newly developed imidodiphosphorimidate (IDPi) catalysts.
View Article and Find Full Text PDFProtected aldols (i.e., true aldols derived from aldehydes) with either - or - stereochemistry are versatile intermediates in many oligopropionate syntheses.
View Article and Find Full Text PDFIn recent years, several organocatalytic asymmetric hydroarylations of activated, electron-poor olefins with activated, electron-rich arenes have been described. In contrast, only a few approaches that can handle , electronically neutral olefins have been reported and invariably require transition metal catalysts. Here we show how an efficient and highly enantioselective catalytic asymmetric intramolecular hydroarylation of aliphatic and aromatic olefins with indoles can be realized using strong and confined IDPi Brønsted acid catalysts.
View Article and Find Full Text PDFThe activation of olefins for asymmetric chemical synthesis traditionally relies on transition metal catalysts. In contrast, biological enzymes with Brønsted acidic sites of appropriate strength can protonate olefins and thereby generate carbocations that ultimately react to form natural products. Although chemists have recently designed chiral Brønsted acid catalysts to activate imines and carbonyl compounds, mimicking these enzymes to protonate simple olefins that then engage in asymmetric catalytic reactions has remained a substantial synthetic challenge.
View Article and Find Full Text PDFThe heterodimerizing self-assembly between a phosphoric acid catalyst and a carboxylic acid has recently been established as a new activation mode in Brønsted acid catalysis. In this article, we present a comprehensive mechanistic investigation on this activation principle, which eventually led to its elucidation. Detailed studies are reported, including computational investigations on the supramolecular heterodimer, kinetic studies on the catalytic cycle, and a thorough analysis of transition states by DFT calculations for the rationalization of the catalyst structure-selectivity relationship.
View Article and Find Full Text PDFThe combined use of a halogen bond (XB) donor with trimethylsilyl halide was found to be an efficient cocatalytic system for the direct dehydroxylative coupling reaction of alcohol with various nucleophiles, such as allyltrimethylsilane and trimethylcyanide, to give the corresponding adduct in moderate to excellent yields. Detailed control experiments and mechanistic studies revealed that the XB interaction was crucial for the reaction. The application of this coupling reaction is also described.
View Article and Find Full Text PDFSalinity stress significantly reduces the root hydraulic conductivity (Lpr) of several plant species including barley (Hordeum vulgare). Here we characterized changes in the Lpr of barley plants in response to salinity/osmotic stress in detail using a pressure chamber. Salt-tolerant and intermediate barley cultivars, K305 and Haruna-nijyo, but not a salt-sensitive cultivar, I743, exhibited characteristic time-dependent Lpr changes induced by 100 mM NaCl.
View Article and Find Full Text PDFChem Commun (Camb)
November 2014
Neutral electrophilic iodine(I) species proved to be efficient reagents for C-X bond cleavage of various cyclic and acyclic α-silyloxyhalides, and the induced desilylative semipinacol rearrangement provided the corresponding ketones in good yields. The reaction is operationally simple, and proceeds under mild conditions with good functional group compatibility. Mechanistic investigations, including computational studies, were also performed.
View Article and Find Full Text PDFA facile and catalytic asymmetric synthesis of the pentacyclic core of (-)-nakadomarin A, containing all the stereogenic centers of the natural product was achieved. The key intermediate involves the oxazolidine moiety as an iminium cation equivalent. An efficient method for the removal of the N-hydroxyethyl group is also described.
View Article and Find Full Text PDFPrevious reports indicate that salt stress reduces the root hydraulic conductance and the expression of plasmamembrane-type aquaporins (PIPs). As a molecular mechanism for this phenomenon, the present study found evidence that the osmotic component, but probably not an ion-specific component, decreases PIP transcripts. Eight of ten PIP transcripts were reduced to less than half by 360 mM mannitol treatment for 12 h in comparison with control samples.
View Article and Find Full Text PDF